
Generalized Aliasing as a
Basis for Program Analysis Tools

Robert O’Callahan
November 2000

CMU-CS-01-124

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Thesis Committee:
Jeannette Wing (co-chair)
Daniel Jackson (co-chair)

Frank Pfenning
Craig Chambers

Copyright 2001, Robert O’Callahan

This research was sponsored by the National Science Foundation (NSF) under grant no.
CCR9523972, the Defense Advance Research Projects Agency (DARPA) and Air Force
(USAF) agreement no. F33615-93-1-1330, the Air Force Research Laboratory (AFRL)
under agreement no. F306029720031, and a Microsoft Fellowship.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
NSF, DARPA, USAF, AFRL, or the U.S. government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Generalized Aliasing as a Basis for Program Analysis Tools

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

294

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: alias analysis, Java, program analysis, software engineering tools, program
understanding, scalability, polymorphic type inference, polymorphic recursion, object
models, object oriented program analysis, SEMI, VPR

3

Abstract

Tools for automatic program analysis promise to improve programmer productivity by
searching and summarizing large bodies of code. However, the phenomenon of aliasing —
different names being used to refer to the same data — reduces the effectiveness of simple
textual analyses. This dissertation describes the design of a system, Ajax, that addresses this
problem by using semantics-based program analysis as the basis for a number of different
tools to aid Java programmers.

To enable the construction of many tools, Ajax imposes a clean separation between analysis
engines that produce alias information and tools that consume it. Analyses are treated as
“black boxes” satisfying a simple, formal specification given in terms of the semantics of
Java bytecode. Knowing only this specification, one can build many different tools with
only a small amount of code. The thesis explores the flexibility and efficiency of the design
by describing the construction and evaluation of several different tools: tools to find dead
code, resolve Java virtual method calls, statically check Java downcasts, search for accesses
to objects, and build object models.

To support these tools, Ajax includes a novel static analysis engine for Java called SEMI,
based on type inference with polymorphic recursion. SEMI provides fully context sensitive
analysis of large programs. Using SEMI with the downcast checking tool, Ajax can prove
the safety of more than 50% of the downcast instructions in some real-life Java programs,
such as Sun’s bytecode disassembler and the JavaCC parser generator. Ajax is the first
system to address this particular task.

One of the key goals of this thesis is to study issues bearing on the practical utility of static
analysis tools for programmers. This document describes some of the challenges involved
in building an analysis system for off-the-shelf Java applications, and suggests some
possible avenues for future research.

4

5

Acknowledgements

It almost goes without saying that I could not have completed this thesis without the support
and tireless efforts of my advisors, Daniel Jackson and Jeannette Wing. With their help, I
have learned far more during my graduate studies than I ever expected. Not only are they
excellent supervisors and colleagues, but they are also marvellous people with whom I am
fortunate to be acquainted. Thank you!

I am extraordinarily grateful to all my friends and colleagues in the Carnegie Mellon School
of Computer Science. They have created an environment that is friendly, well-organized,
incredibly stimulating, and designed to allow students to focus on learning and getting their
work done rather than dealing with secondary issues. I can honestly say I do not expect ever
again to work in such a wonderful setting.

In the two and a half years since our marriage, my wife Janet has consistently supported me
in my work and indulged me when it interfered with our lives together. Fortunately such
interference was not too frequent, and her love and companionship have been truly
delightful.

My parents tolerated my obsession with computers from a young age, and have also
supported me wholeheartedly during my interminable studenthood. Thanks Mum and Dad!

Much of the joy and support in the lives of Janet and I has come from our walk with God
in the fellowship of the Pittsburgh Chinese Church. I would like to especially thank Yuan
Chou and the other brothers and sisters who provided us with a spiritual home and great
examples of servanthood for Janet and I to follow.

6

7

Table of Contents

Abstract .3

Acknowledgements .5

CHAPTER 1 Introduction .23

1.1 Setting . 23

1.1.1 Software Engineering and Alias Analysis . 23

1.1.2 The Need For Alias Information . 24

1.1.3 Shortcomings of Existing Tools. 24

1.1.4 Assumptions. 25

1.1.5 Goal . 26

1.2 Approach . 26

1.2.1 Support For Multiple Tools and Analyses . 26

1.2.2 Support For Java Programs . 28

1.2.3 Simple Context Sensitive Analysis . 28

1.2.4 Distinguishing Features . 29

1.3 Contributions . 30

1.4 Thesis Overview . 30

CHAPTER 2 Related Work .33

2.1 Introduction . 33

2.2 Program Analyses . 33

2.2.1 Distinguishing Analysis Techniques from Analysis Problems . 33

2.2.2 Classifying Analyses . 34

2.2.3 Describing Results . 35

2.2.4 Flow Sensitive, Context Insensitive Analyses . 35

2.2.5 Flow Sensitive, Context Sensitive Analyses . 37

2.2.6 Simpler Analyses . 39

2.2.7 Flow Insensitive, Context Sensitive Analyses . 40

2.2.8 Type Inference for Object Oriented Languages. 41

2.2.9 Composing Analyses . 42

2.2.10 Analysis Toolkits . 42

2.3 Software Engineering Tools . 43

2.3.1 Software Engineering Tools for Program Understanding . 43

2.3.2 Semantics-based Tools For Program Understanding. 44

2.4 Language Semantics . 44

CHAPTER 3 The Value-Point Relation: Separating Analyses from Tools45

3.1 Overview . 45

3.1.1 Desirability of Simple Semantics. 45

3.1.2 The Value-Point Relation . 45

3.2 Semantics of the Micro Java Bytecode Language. 46

8

3.2.1 Preamble. 46

3.2.2 Programs. 47

3.2.3 State . 49

3.2.4 Initial State . 50

3.2.5 Transition Rules . 50

3.2.6 Differences between JBC and MJBC. 51

3.3 The Value-Point Relation. 55

3.3.1 Bytecode Expressions . 55

3.3.2 The Value-Point Relation. 56

3.4 Generalizing Alias Analysis Using Tagging . 57

3.4.1 Overview . 57

3.4.2 Tagged State . 57

3.4.3 Tagged Transition Rules . 58

3.4.4 Correspondence Between Tagged Semantics and Untagged Semantics 58

3.4.5 Correspondence of Traces . 63

3.4.6 Defining the VPR Using Tags . 64

3.5 Examples of Using the Value-Point Relation . 64

3.5.1 Finding Writers to a Field . 64

3.5.2 Downcast Checking . 65

3.6 Properties of the Value-Point Relation . 65

3.7 Extensions . 66

CHAPTER 4 Efficient Queries over the Value-Point Relation69

4.1 Introduction . 69

4.2 Analysis Parameters . 69

4.2.1 Restricting the Domain of the Value-Point Relation . 69

4.2.2 Avoiding Explicit Products . 70

4.2.3 General Framework . 72

4.2.4 Tool Target Data . 73

4.2.5 Summary of Analysis Parameters . 73

4.3 Examples . 74

4.3.1 Finding Writers to a Field . 74

4.3.2 Finding Unused Fields . 74

4.3.3 Downcast Checking . 75

4.3.4 Method Call Resolution . 76

4.3.5 Live Code Detection. 77

4.4 Additional Features of the Ajax Implementation. 78

4.4.1 Query Families and Query Fields. 78

4.4.2 Incrementality. 78

4.4.3 Code Mutation . 79

4.4.4 Analysis Scoping . 79

4.4.5 Intersection . 79

CHAPTER 5 Implementing the Value-Point Relation With RTA81

5.1 Introduction . 81

5.1.1 Introduction to Rapid Type Analysis . 81

9

5.1.2 Decomposing RTA in Ajax . 82

5.2 Approximating the Value-Point Relation . 83

5.2.1 Overview . 83

5.2.2 Types for Bytecode Expressions . 83

5.2.3 Computing the Relation . 84

5.2.4 Exact Class Types . 85

5.3 Implementing the Ajax Analysis Interface . 86

5.3.1 The Data Propagation Graph . 87

5.3.2 Computing Analysis Results . 89

5.3.3 Example . 90

5.3.4 Performance . 91

5.3.5 Incrementality . 91

5.4 RTA++: Tracking Typecases. 91

5.4.1 Motivation . 91

5.4.2 Refining the Bytecode Type Assignment . 92

CHAPTER 6 The SEMI Analysis. .93

6.1 Introduction . 93

6.1.1 Chapter Overview . 93

6.1.2 Approach . 94

6.1.3 Implications . 94

6.1.4 Relationship to the Implementation . 95

6.1.5 Chapter Organization . 95

6.2 Constraint System . 96

6.2.1 Constraints . 96

6.2.1.1 Constraint Structures . 96

6.2.1.2 Relationship to Terms . 96

6.2.2 Solutions . 97

6.2.3 Remarks . 98

6.3 The Encoding. 99

6.3.1 Introduction . 99

6.3.2 Methods . 99

6.3.3 Global Variables . 100

6.3.4 Object Encoding. 101

6.3.5 Method Encoding. 102

6.3.5.1 Static Methods . 102

6.3.5.2 Nonstatic Methods . 102

6.3.5.3 Type Checking/Inference For Nonstatic Methods . 103

6.3.5.4 Treatment Of Polymorphism . 104

6.3.5.5 Polymorphism In Object Creation . 104

6.3.6 Extensible Records and Object Classes . 105

6.3.7 Mutability. 106

6.3.8 Control Flow . 106

6.3.9 Exception Handling . 107

6.4 Initial Constraint Set . 108

6.4.1 Constraint Variables. 108

10

6.4.2 Instance Labels . 108

6.4.3 Component Labels . 109

6.4.4 Program Constraints . 110

6.4.5 Query Constraints. 113

6.4.6 Canonical Constraint Set . 113

6.4.7 Example . 114

6.4.7.1 Initial Constraints . 114

6.4.7.2 Finding a Closed Form . 114

6.5 Extracting the VPR Approximation . 116

6.5.1 Overview . 116

6.5.2 Relating Bytecode Expressions to Variables . 117

6.5.3 Constraints to Support Query Expressions. 122

6.5.3.1 Inadequacy of Program Constraints . 122

6.5.3.2 Query Constraints . 122

6.6 Implementing the Ajax Interface . 122

6.6.1 The Graph. 123

6.6.2 Computing Analysis Results . 124

6.6.3 Incrementality. 124

6.7 Proving Soundness . 124

6.7.1 Overview . 124

6.7.1.1 Strategy. 124

6.7.1.2 Note: Unique Justification for Transitions . 125

6.7.2 The Creation Function . 126

6.7.2.1 “Creation” Is a Function . 126

6.7.3 The CallerState Function . 126

6.7.3.1 Definition . 126

6.7.3.2 Scope of Definition . 128

6.7.3.3 Nested Call Stack . 129

6.7.3.4 Preservation of Caller State . 129

6.7.3.5 Method Entry Correspondence. 130

6.7.4 The Context Function . 130

6.7.4.1 Definition of the Context Function . 131

6.7.4.2 Preservation of Return Types . 132

6.7.5 Proving the Conformance Lemma . 133

6.7.5.1 Base Case . 135

6.7.5.2 Preservation of Virtual Call Types . 135

6.7.5.3 Globals Hypothesis. 137

6.7.5.4 Field Dereferences . 139

6.7.5.5 Static Field Expressions . 142

6.7.5.6 Cases For Simple Expressions . 143

6.7.5.7 Reduction Function . 143

6.7.5.8 Succession Lemma . 143

6.7.5.9 Step: ORDG rule . 144

6.7.5.10 Induction Step: VWRUH rule . 145

6.7.5.11 Induction Step: QHZ rule. 146

6.7.5.12 Induction Step: DFRQVWBQXOO rule . 147

11

6.7.5.13 Induction Step: ELSXVK rule. 147

6.7.5.14 Induction Step: rule for spontaneous exception throw . 147

6.7.5.15 Induction Step: LQYRNHVWDWLF rule . 147

6.7.5.16 Induction Step: LQYRNHYLUWXDO rule . 148

6.7.5.17 Induction Step: UHWXUQ rule. 149

6.7.5.18 Induction Step: exceptional returns . 151

6.7.5.19 Induction Step: DWKURZ rule. 152

6.7.5.20 Induction Step: rule for exception catching . 153

6.7.5.21 Induction Step: JHWILHOG rule . 154

6.7.5.22 Induction Step: SXWILHOG rule . 155

6.7.5.23 Induction Step: JHWVWDWLF rule . 155

6.7.5.24 Induction Step: SXWVWDWLF rule . 156

6.7.5.25 Induction Step: LDGG rule . 157

6.7.5.26 Induction Step: LIFPSHT rules . 157

6.7.5.27 Induction Step: JRWR rule . 158

6.7.5.28 Induction Step: LQVWDQFHRI rules . 159

6.7.5.29 Induction Step: FKHFNFDVW rule . 159

CHAPTER 7 SEMI Implementation .161

7.1 Introduction . 161

7.1.1 Solver Specification . 161

7.1.2 Decidability and Performance . 161

7.1.3 Refined Specification. 162

7.1.4 Basic Structure . 163

7.2 Basic Algorithm. 163

7.2.1 Representation of Equality. 163

7.2.2 Functional Representation of Components and Instances . 163

7.2.3 Component Propagation. 164

7.2.4 Saving Time By Recording Additional Dirtiness Information . 165

7.2.5 Overview of an Algorithm Step . 165

7.2.6 The Extended Occurs Check . 166

7.2.7 Nondeterminism. 167

7.3 Optimizing the Occurs Check: Clusters. 168

7.3.1 Constraint Structure . 168

7.3.2 Clusters . 168

7.3.3 Optimizing the Extended Occurs Check Using Clusters . 168

7.3.4 Cluster Levels . 169

7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels . 169

7.3.6 Replacing the Extended Occurs Check with a Conservative Approximation 170

7.4 Scheduling the Worklist Using Cluster Levels . 170

7.4.1 The Scheduling Problem . 170

7.4.2 Using Cluster Levels . 170

7.5 Suppressing Components: Advertisements . 171

7.5.1 Useless Component Propagation . 171

7.5.2 Illustration . 171

7.5.3 Quasi-closure Conditions. 172

12

7.5.4 Advertisements . 173

7.5.5 Example . 174

7.5.6 Ensuring Quasi-closure: Fill-in . 174

7.5.7 Ensuring Quasi-closure: Detecting Conflicting Sources . 175

7.5.8 Simple Example . 176

7.5.9 Advertisement Source Updates . 176

7.5.10 Implementation. 177

7.6 Globals . 178

7.6.1 Handling Program Global Variables . 178

7.6.2 Characterization of Constraints for Globals . 178

7.6.3 Implementation. 179

7.6.4 Exceptions . 179

7.7 A Failed Optimization: Cut-throughs. 179

7.7.1 Example . 179

7.7.2 Cut-throughs. 180

7.8 Reducing the Number of Initial Constraints . 180

7.8.1 Dynamic Method Call Resolution . 180

7.8.2 Lazy Method Slot Stuffing . 181

7.8.3 Instance Suppression . 181

7.8.4 Disabling Intra-method Polymorphism . 181

7.8.5 Structural Shortcuts . 181

7.9 Reducing the Number of Inferred Constraints . 182

7.9.1 Component Partitioning . 182

7.10 Suppressing Components: Modality . 183

7.10.1 Example . 183

7.10.2 Approach . 183

7.10.3 Solver Rules . 185

7.10.4 Example . 185

7.10.5 Implementation. 185

7.10.6 Detecting Unused Fields . 186

7.11 Nondeterministic Virtual Method Calls . 187

7.12 Future Work and Related Work . 187

CHAPTER 8 Analyzing The Inscrutable .189

8.1 Introduction . 189

8.2 Foreign and Unknown Code . 189

8.2.1 Foreign Code . 189

8.2.2 Unknown Code. 190

8.2.3 Possible Approaches . 190

8.3 Salamis: A Specification Language for Foreign Code. 190

8.3.1 The Need For A Separate Specification Language . 190

8.3.2 Example and Overview . 191

8.3.3 Salamis Syntax . 192

8.3.4 Other Salamis Features. 194

8.3.5 Implementation. 195

8.4 Salamis Specifications . 195

13

8.4.1 Omissions. 195

8.4.2 Risks. 195

8.4.3 Handling Strings . 196

8.4.4 Other Areas Of Interest . 196

8.5 Reflection And Serialization . 197

8.5.1 Introduction . 197

8.5.2 The Reflection Services . 197

8.5.3 Reflection Specifications . 198

8.5.4 Reflection Specification Syntax. 199

8.5.5 Creating The Specifications . 200

8.5.6 Using Reflection Specifications. 201

8.6 Conclusions . 202

CHAPTER 9 Performance .203

9.1 Introduction . 203

9.2 Benchmark Environment . 203

9.2.1 System . 203

9.2.2 Benchmark Examples . 203

9.3 Tools . 206

9.3.1 Virtual Call Resolution . 206

9.3.2 Live Code Identification . 209

9.4 Performance of RTA++ . 210

9.5 Performance of SEMI . 210

9.5.1 Overview . 210

9.5.2 Performance of SEMI in Different Configurations . 212

9.5.3 Accuracy of SEMI in Different Configurations. 212

9.5.4 Component Partitioning in SEMI . 215

9.6 RTA++ and SEMI Intersection . 215

9.6.1 Basic Results . 215

9.6.2 Set Sizes . 219

9.7 Summary of Ajax Performance . 219

9.7.1 Algorithm Selection . 219

9.7.2 Summary Results . 219

9.7.3 Conclusions . 220

CHAPTER 10 Proving Downcast Safety .223

10.1 Introduction . 223

10.1.1 Parametric Polymorphism and Downcasts . 223

10.1.2 Using SEMI To Prove Downcasts Correct . 223

10.2 The Downcast Checking Tool . 224

10.2.1 Interface to the VPR. 224

10.2.2 User Interface. 224

10.3 Quantitative Results . 224

10.3.1 Proving Downcasts Safe Using RTA++ . 224

10.3.2 Proving Downcasts Safe Using SEMI . 225

10.3.3 Proving Downcasts Safe Using SEMI with RTA++ . 225

14

10.3.4 Summary . 227

10.4 Unresolvable Downcasts . 228

10.4.1 Confusion Involving Sum Types . 228

10.4.2 “Out Of Band” Dynamic Type Knowledge . 228

10.5 Conclusions . 229

10.5.1 Summary . 229

10.5.2 Other Applications . 229

10.5.3 Limitations of Downcast Checking . 229

CHAPTER 11 Ajax Object Models .231

11.1 Introduction . 231

11.1.1 Overview of Object Models . 231

11.1.2 A Definition of Object Models. 233

11.2 Computing Object Models with Ajax . 234

11.2.1 Overview . 234

11.2.2 Computing Heap Graphs With The VPR . 237

11.2.2.1 Approach . 237

11.2.2.2 Method . 237

11.2.2.3 Correctness . 237

11.2.2.4 Solution . 238

11.2.2.5 Implementing Substitutability In RTA++ . 239

11.2.2.6 Implementing Substitutability In SEMI . 239

11.2.2.7 Improving The Heap Graph Algorithm . 239

11.2.2.8 Reducing Space Consumption . 239

11.2.3 Lossless Improvement to the Model . 243

11.2.3.1 Superflous Leaf Classes . 243

11.2.3.2 Merging Identical Subgraphs . 243

11.2.4 User Interface . 244

11.3 Examples . 244

11.3.1 JavaP Example . 244

11.3.2 CTAS Example . 246

11.3.3 Improving The Model By Discarding Information . 248

11.3.3.1 Removing “Lumps” . 248

11.3.3.2 Hiding Strings And Other Classes . 248

11.3.4 Jess Example . 248

11.4 Conclusions . 252

11.4.1 Contributions . 252

11.4.2 Future Work . 252

CHAPTER 12 A Scanning Tool .253

12.1 Introduction . 253

12.2 The JGrep Tool . 253

12.2.1 User Interface . 253

12.2.2 Implementation. 253

12.3 Examples . 254

12.3.1 Checking an Anomaly . 254

15

12.3.2 Checking Field Accesses . 255

12.4 Conclusions . 256

CHAPTER 13 Conclusions .257

13.1 Summary . 257

13.2 Outlook . 258

Bibliography .261

APPENDIX A Polymorphic Recursion, Unrestricted Recursive Types and Principal
Types .271

APPENDIX B Ajax Foreign Code Specifications .275

APPENDIX C Ajax Reflection Specifications .291

16

17

List of Figures
CHAPTER 1 Introduction ..23

Figure 1-1. Example of Java code exhibiting aliasing .. 23
Figure 1-2. Example of an Ajax configuration ... 27
Figure 1-3. Example of an Ajax configuration with composition .. 29

CHAPTER 2 Related Work ..33

CHAPTER 3 The Value-Point Relation: Separating Analyses from Tools45

Figure 3-1. The Micro Java Bytecode instruction set ... 48
Figure 3-2. Rules defining the transition relation ... 52
Figure 3-3. The language of bytecode expressions... 55
Figure 3-4. Rules defining the evaluation of bytecode expressions ... 56
Figure 3-5. Rules defining the tagged transition relation.. 59
Figure 3-6. Rules defining the evaluation of bytecode expressions in tagged states...................... 64

CHAPTER 4 Efficient Queries over the Value-Point Relation69

Figure 4-1. Example of Java code exhibiting aliasing .. 71
Figure 4-2. Example of an analysis graph used by the downcast checking tool............................. 71
Figure 4-3. Example of non-lattice behavior due to interfaces... 76

CHAPTER 5 Implementing the Value-Point Relation With RTA..........................81

Figure 5-1. A simple Java program... 81
Figure 5-2. Example of a bytecode type graph ... 85
Figure 5-3. A fragment illustrating the need for exact class types ... 86
Figure 5-4. Example of a bytecode type graph ... 87
Figure 5-5. Example of a propagation graph .. 88
Figure 5-6. A Java program using LQVWDQFHRI and FKHFNFDVW .. 92

CHAPTER 6 The SEMI Analysis...93

Figure 6-1. Static Method Example .. 102
Figure 6-2. Static Method Translation .. 102
Figure 6-3. Nonstatic Method Example.. 103
Figure 6-4. Nonstatic Method Translation .. 103
Figure 6-5. Extensible Record Example ... 105
Figure 6-6. A Simple Java Program.. 114
Figure 6-7. Rules defining the mapping from bytecode expressions to constraint variables and

components ... 117
Figure 6-8. Rules defining evaluation through components ... 117
Figure 6-9. Rules defining evaluation through instances.. 118
Figure 6-10. Rule assigning a ground variable to an expression in a given context..................... 118
Figure 6-11. Rules defining the Creation function.. 127

CHAPTER 7 SEMI Implementation ...161

Figure 7-2. Closed constraint set... 172

18

Figure 7-1. Initial constraint set ..172
Figure 7-3. Use of advertisements...174
Figure 7-4. Initial constraint set before fill-in ...175
Figure 7-5. Advertisement constructed before fill-in ..175
Figure 7-6. Advertisement replaced with component ...175
Figure 7-7. After fill-in..175
Figure 7-8. Initial constraints leading to advertisement source conflict177
Figure 7-9. Initial constraints requiring advertisement source update ..177
Figure 7-10. Initial constraints requiring advertisement source update ..178
Figure 7-11. Advertisement proliferation ..182
Figure 7-12. Advertisement proliferation averted ...183
Figure 7-13. Constraint Structures Leading to Excessive Merging ..184
Figure 7-14. Modal Annotations ...185
Figure 7-15. Query widget ..186

CHAPTER 8 Analyzing The Inscrutable ..189

Figure 8-1. Application code using using native methods ..191
Figure 8-2. Specification for MDYD�LR�)LOH,QSXW6WUHDP�RSHQ191
Figure 8-3. Salamis grammar ..193
Figure 8-4. Sample reflection specification ..198
Figure 8-5. Reflection specification grammar...199

CHAPTER 9 Performance..203

Figure 9-1. Example program sizes...206
Figure 9-2. Correlation between number of methods and number of classes207
Figure 9-3. Correlation between bytecode bytes and number of methods....................................207
Figure 9-4. Correlation between bytecode bytes and number of methods, for application code..208
Figure 9-5. Correlation between number of methods and number of classes, for application code208
Figure 9-6. Memory consumption of RTA++..210
Figure 9-7. Time consumption of RTA++...211
Figure 9-8. Space consumption of SEMI configured for high accuracy.......................................211
Figure 9-9. Time consumption of SEMI configured for high accuracy ..212
Figure 9-10. Space consumption of SEMI in four configurations, for live method detection......213
Figure 9-11. Time consumption of different SEMI configurations, for live method detection213
Figure 9-12. Accuracy of SEMI configurations for live method detection...................................214
Figure 9-13. Accuracy of SEMI configurations for virtual method call resolution214
Figure 9-14. Memory consumption for different component partitioning schemes216
Figure 9-15. Time consumption for different component partitioning schemes...........................216
Figure 9-16. Example Of RTA++ Improving SEMI ...217
Figure 9-17. Accuracy of three different analyses for virtual call resolution217
Figure 9-18. Accuracy of three different analyses for live method detection218
Figure 9-19. Time required by three different analyses for virtual call resolution218
Figure 9-20. Space required by three different analyses for virtual call resolution219
Figure 9-21. Effect of different set sizes on virtual call resolution accuracy................................220
Figure 9-22. Accuracy of the three contending algorithms...220
Figure 9-23. Time consumption of the three contending algorithms ..221
Figure 9-24. Space consumption of the three contending algorithms...221

CHAPTER 10 Proving Downcast Safety ...223

19

Figure 10-1. Example of a Java generic container requiring downcasts 223
Figure 10-2. Downcasts proven safe using RTA and RTA++... 225
Figure 10-3. Downcasts proven safe using SEMI... 226
Figure 10-4. Downcasts proven safe using SEMI & RTA++ ... 226
Figure 10-5. Overall results .. 227

CHAPTER 11 Ajax Object Models..231

Figure 11-1. A class hierarchy object model .. 231
Figure 11-2. An example Java program.. 232
Figure 11-3. A richer object model ... 232
Figure 11-4. Ajax heap graph.. 235
Figure 11-5. Ajax heap graph with unique field edges (simple object model) 235
Figure 11-7. Ajax object model with superclass suppression ... 236
Figure 11-6. Ajax object model with classes and inheritance... 236
Figure 11-8. Basic heap graph construction algorithm ... 238
Figure 11-9. Example of substitutability violation ... 238
Figure 11-10. More efficient heap graph construction algorithm ... 240
Figure 11-11. Heap graph construction algorithm with reduced peak space consumption 242
Figure 11-12. Example of field retargeting leaving unreachable nodes 244
Figure 11-13. Example of merging duplicate subgraphs .. 244
Figure 11-14. JavaP object model ... 245
Figure 11-15. CTAS object model .. 247
Figure 11-16. Jess object model.. 250

CHAPTER 12 A Scanning Tool ...253

Figure 12-1. Output of the creation sites and method calls on the PBFOHDUDEOHV object 255
Figure 12-2. Accesses to the IODJV field of %DWFK(QYLURQPHQW .. 256

CHAPTER 13 Conclusions ...257

20

21

List of Tables
CHAPTER 1 Introduction ..23

CHAPTER 2 Related Work ..33

CHAPTER 3 The Value-Point Relation: Separating Analyses from Tools45

CHAPTER 4 Efficient Queries over the Value-Point Relation69

CHAPTER 5 Implementing the Value-Point Relation With RTA..........................81

CHAPTER 6 The SEMI Analysis...93

Table 6-1. Instruction Constraints ... 111
Table 6-2. A Simple Bytecode Program and its Constraints... 115

CHAPTER 7 SEMI Implementation ...161

CHAPTER 8 Analyzing The Inscrutable ..189

CHAPTER 9 Performance..203

Table 9-1. Environment specifications.. 204
Table 9-2. The example programs... 204
Table 9-3. Size statistics for the example programs.. 205

CHAPTER 10 Proving Downcast Safety ...223

CHAPTER 11 Ajax Object Models..231

CHAPTER 12 A Scanning Tool ...253

CHAPTER 13 Conclusions ...257

22

23

1 Introduction

1.1 Setting

1.1.1 Software Engineering and Alias Analysis
Building large, complex software systems is difficult. Human beings have limited capacity
to understand and recall the details of such systems. Since computers are adept at handling
large quantities of data, one would expect automatic tools to be useful for helping
programmers to understand large programs.

Indeed, many such tools do exist. Program code is partitioned into files and organized using
file systems. Data about programs are stored in bug databases [88] and design documents
[70].

In my thesis, I focus on tools that work directly with program code. A key phenomenon that
makes program code difficult to understand is aliasing: the use of multiple names to refer
to the same entity. For example, consider the fragment of Java code shown in Figure 1-1.
In this code, a reference to the string object “Hello” is stored in V� and inserted into the
9HFWRU, and then extracted into V. Therefore the variables V and V� are aliased. Likewise
V and V� are aliased.

Suppose the programmer wants to find out information about the object referred to by V�
— for example, what methods are called on it, and where in the program those calls occur.
It is insufficient to search the text for the name “V�”. The programmer must also examine
V�’s aliases — in this case, V. In general, whenever the programmer is interested in

VWDWLF�YRLG�PDLQ���^
����6WULQJ�V�� �³+HOOR´�
����6WULQJ�V�� �³.LWW\´�
����9HFWRU�Y� �QHZ�9HFWRU���������&UHDWH�D�QHZ�9HFWRU�FRQWDLQLQJ
����Y�DGG(OHPHQW�V����������������V��DQG�V���DQG�SULQW�RXW�LWV
����Y�DGG(OHPHQW�V����������������HOHPHQWV

����,QWHJHU�L�� �QHZ�,QWHJHU����
����9HFWRU�Y�� �QHZ�9HFWRU���
����Y��DGG(OHPHQW�L���

����IRU��(QXPHUDWLRQ�H� �Y�HOHPHQWV����H�KDV0RUH(OHPHQWV�����^
��������6WULQJ�V� ��6WULQJ�H�QH[W(OHPHQW���
��������6\VWHP�RXW�SULQWOQ�V�OHQJWK����
����`
`

Figure 1-1. Example of Java code exhibiting aliasing

24

properties of data which may be accessed through different names, alias information is
required.

Most tools for understanding code make no attempt to handle aliasing. The programmer
must manually peruse the source code to discover aliasing relationships and to gather infor-
mation about the referenced data. This thesis describes the design of a practical alias
analysis system for a modern programming language (Java), and code understanding tools
based on it.

1.1.2 The Need For Alias Information
Many different questions which arise during programming involve alias information.
Consider these questions that a programmer might ask:1

1. “What kind of objects can be in the container X?”

2. “What does the structure of object X and its contents look like?”

3. “Which methods of object X are invoked, and where are they called?”

4. “Is this line of code ever executed or not?”

The programmer might specify “object X” by giving, for example, a program location and
the name of a variable in scope at that location.

All of these questions require alias information. Questions 1, 2 and 3 clearly require infor-
mation about objects; collecting this information will require knowledge of which names
refer to the objects of interest. In an object-oriented setting, question 4 also requires alias
information because tracing the flow of control requires information about objects that are
targets of method invocations.

This thesis demonstrates that not only do these questions require alias information, but once
alias information is available in a convenient format, these questions are relatively easy to
answer.

1.1.3 Shortcomings of Existing Tools
Existing practical tools use very simple approximations whenever they need alias infor-
mation. A common and useful approximation is to compare the declared types of variables
to see whether they may be aliases [23]. For example, in Figure 1-1, the 9HFWRU Y and the
6WULQJ V cannot be aliases because the Java class hierarchy does not permit any object to
be simultaneously a 6WULQJ and a 9HFWRU.

However, code reuse frequently leads to different instances of the same type being used in
different ways. For example, in Figure 1-1 Y and Y� are 9HFWRUV, a generic container
type frequently used in Java. Suppose the programmer wishes to prove that the 9HFWRU in
Figure 1-1 contains only 6WULQJV. She must find all aliases to Y and show that the objects
inserted into those 9HFWRUV are 6WULQJV. An alias analysis based on declared types

1. These questions are all phrased in terms of object-oriented programs, but similar
questions and observations apply to programs written in C, or any modern programming
language.

25

alone will imply that Y and Y� are aliases, and therefore Y’s 9HFWRU might contain
,QWHJHUV as well as 6WULQJV. Such an analysis will inaccurately conclude that the
downcast to 6WULQJ might fail.

Researchers have devised much more sophisticated alias analyses. However, the fruits of
this research are not being used by production-line programmers. The motivation for this
thesis is to attack this adoption barrier.

Therefore I have constructed a program analysis system called Ajax. The design goals of
Ajax reflect perceived limitations of previous attempts at implementing analysis tools.

• Scalability
An analysis that produces wonderfully detailed information will be useless if it is
unable to handle large programs. If a program is small enough to be easily understood
by a programmer, then the programmer does not need an analysis tool.

• Applicability
Many analyses are not useful because they do not deal well with features of modern
programming languages and modern programs, such as

• Higher order control flow and dynamic method dispatch;

• Ubiquitous dynamic memory allocation;

• Large, complex dynamic data structures;

• Multiple levels of data encapsulation;

• Class library code used in multiple contexts

Ajax is designed to handle programs written in a modern language with all these fea-
tures — Java — and is specifically designed to handle these features well.

• Usability
Previous work such as Lackwit [54] erred by exposing the results of analysis very
directly to the user, with little summarization or interpretation. It was often unclear to a
normal programmer how the results should be interpreted. Therefore, instead of build-
ing a single monolithic tool, Ajax is designed to be a platform upon which a variety of
tools can be built, each addressing a particular kind of task or question that the pro-
grammer may pose. The user interface to each tool is customized for its particular func-
tion.

An additional implied design goal is that Ajax must be powerful enough to be worth using
while meeting the above requirements. At the least, it must discover useful information that
could not be obtained by simple methods based on local reasoning. This thesis shows how
Ajax achieves all these goals simultaneously.

1.1.4 Assumptions
Apart from the requirements above, the design of Ajax was constrained by assumptions
about the nature of the solution. These assumptions stemmed from the background of this
work, and have some independent justification, but are not fundamental.

26

• Sound Static Analysis
Ajax is designed to produce static guarantees: results that are valid for all possible
inputs and executions of the program. Therefore it must use conservative analysis. For
example, when finding the sites of all method invocations on a particular object or set
of objects, it only promises to return a superset of the true sites. One justification for
using sound analysis is that the meaning of the results is easier to define; the results do
not need to be qualified by the limits of a test suite or the nature of heuristics used by
the system. Also, for some applications, such as compilation or automatic transforma-
tion, it is intrinsically important that the results be sound. However, an analysis need
not be sound to be useful, so the choice to explore this part of the design space was not
a necessary decision.

• Global Analysis
Ajax analyzes whole programs. The behavior of any unavailable parts must be repre-
sented by specifications. This is desirable because behaviors due to component interac-
tions are often the most difficult to understand, and therefore the most useful to be able
to analyze automatically. Also, sound analysis of partial programs requires some sort of
description of the missing parts, or else one must make “worst case” assumptions about
those parts. The quality of the analysis results is likely to be severely degraded by such
pessimistic assumptions.

1.1.5 Goal
The goal of this thesis is to demonstrate that sound, static, global alias analysis can be
the basis for tools that accurately answer programmers’ questions about real, large
object-oriented programs.

By “accurately”, I mean that the results are significantly more accurate than those provided
by existing tools.

1.2 Approach
Ajax incorporates several key features to achieve the above goal.

1.2.1 Support For Multiple Tools and Analyses
The key to the design of Ajax is its division into tools and analyses. In Ajax, a tool is a
component presenting a single interface to the user (typically, a programmer), designed to
aid the user in a specific task by providing specific information in a specific way. An
analysis is a component that produces alias information to be consumed by tools. Each
analysis implements a simple, fixed, and rigorously defined interface, which presents
aliasing information to tools in the form of an abstraction called the value-point relation (or
VPR). This is illustrated in Figure 1-2.

This design has major benefits:

27

• One can use Ajax to construct one tool for each specific task that requires alias infor-
mation. Ajax is carefully organised so that each tool requires little effort to implement.
In particular, unlike some other analysis toolkits such as BANE [28], knowledge of the
semantics of the target language is built into Ajax’s analyses and does not have to be
provided by the tool.

• Ajax offers a suite of different analysis engines. One can select an engine for a given
problem to achieve an appropriate tradeoff between accuracy and resource consump-
tion. Results show that the appropriate analysis configuration varies significantly
according to the task being addressed. Because the VPR interface is fixed and fully
defined, there are no fundamental restrictions on combining analyses with tools; any
tool will operate correctly with any analysis. A given combination may or may not give
good quality results, but it will give correct results.

• Ajax allows composition of analyses. Two analyses can be “intersected” to combine the
best results of both to solve a particular problem. Alternatively, one analysis can be
used as a “preprocessing step” to provide information that will speed up or improve the
accuracy of another analysis. These capabilities are both crucial to good performance
and accuracy in Ajax. To implement composition, an analysis simply uses the VPR
interface to consume alias information produced by one or more other analyses. One
such configuration is illustrated in Figure 1-3 below.

Conceptually, the value-point relation is simply the aliasing relation between program
variables (and expressions). The difficult part of the design is defining a concrete interface
connecting tools to analyses that allows efficient, simple implementations of both. The
VPR also generalizes alias analysis to provide information about values which are not
object references — e.g., integers. The details are explained in Chapter 3 and Chapter 4.

The design is exercised by constructing multiple analysis engines (see Section 1.2.3
below), and tools for the following tasks:

• Proving the safety of Java downcasts

Figure 1-2. Example of an Ajax configuration

.class
files

Code
ResultsTool

Code

Analysis1

Code
Analysis2

Code

VPR

Results

ToolVPR

Find Dead
Code

Object
Model

28

• Identifying dead code

• Resolving virtual method calls

• Computing object models

• Scanning the program for accesses to objects satisfying certain criteria

1.2.2 Support For Java Programs
As mentioned above, Ajax is designed to handle general Java programs. Java programs
exhibit a variety of “modern” language features that are becoming common:

• Objects — that is, inheritance, dynamic method dispatch, and data abstraction

• Extensive use of class libraries, such as the Java standard library and the Abstract Win-
dow Toolkit user-interface and graphics library

• Well-defined semantics; the language specification defines the behavior of all Java
code

• Reflection and dynamic loading; Java programs can dynamically load new code at run-
time, and metadata describing and providing access to loaded code and data is exported
to the running program

• Exceptions

• Thread-based concurrency

To simplify the presentation and implementation, Ajax actually processes Java bytecode
programs. This also makes it possible for Ajax to process programs whose source code is
not available.

1.2.3 Simple Context Sensitive Analysis
To give significantly more accurate results than local analyses such as those based on
declared types, an alias analysis must be able to distinguish between different data accessed
with the same variable/type names. In complex programs, the interesting data are often
constructed and accessed through one or more levels of indirection. For example, in object
oriented programs, patterns such as constructors, abstract factories, and field access
methods are ubiquitous. For these programs, some context sensitive analysis is required.

The goal is not to have the most sophisticated analysis, but rather one that significantly
improves on existing fast analyses by providing context sensitivity. Therefore I chose to
base Ajax’s primary analysis on the simplest analysis with a high degree of context sensi-
tivity: Hindley-Milner style polymorphic type inference [49].

Hindley-Milner type inference is the basis for type inference in Standard ML [50]. The
basic idea of applying this procedure to analyze aliasing in Java programs is to erase the
declared types of variables, and perform type inference based only on the type constraints
induced by operators used in the program code. The inferred type information is used to
resolve aliasing questions in a similar way to which declared type information is used.
However, inferred types give more precise information than declared types, because the
inferred types can be finer and their type system richer, by virtue of polymorphism. For

29

example, in Figure 1-1 Ajax can automatically prove that the 9HFWRU Y contains only
6WULQJV, and therefore the downcast cannot fail. This example requires context sensitive
analysis (see Section 2.2.2); no other comparable system provides it.

Based on experiences with Lackwit [54], a similar system for analyzing C programs, I
extended the analysis in several ways:

• The addition of polymorphic recursion [42] prevents loss of polymorphism in the pres-
ence of mutually recursive declarations.

• To better handle Java objects, the analysis treats “extensible records” [65] in a clean
way.

• I changed some details of the theory and implementation to improve performance and
better fit Java programs.

These features are extensively discussed and evaluated in this thesis. The general problem
of type inference with polymorphic recursion can be reduced to the formal problem of
semiunification [42]; for this reason I call this alias analysis engine “SEMI”.

I also implemented a variant of Rapid Type Analysis [9], an analysis based on reasoning
about the declared types of variables. Figure 1-3 shows an example Ajax configuration
using one instance of SEMI and two instances of RTA. This configuration is explained
further in Section 4.4.5 and Section 9.6.

1.2.4 Distinguishing Features
Some unique features distinguish Ajax from all prior work:

• The SEMI analysis engine is the only engine combining full support for the Java lan-
guage, context sensitivity, and higher-order control flow analysis.

• SEMI is the only analysis engine for a real programming language that provides poly-
morphic recursion and also distinguishes different fields of structures.

Figure 1-3. Example of an Ajax configuration with composition

.class
files

Analysis
VPR

VPR

Analysis

Analysis
VPR Analysis

VPR

RTA

RTA

SEMI

Intersect

Code

Code

Results

Tool
JGrep

Code

Code

30

• Ajax is the only analysis toolkit able to provide aliasing information directly to tools in
a clean, efficient and analysis-independent way.

• Ajax is the only system able to prove the safety of Java downcasts related to generic
data structures (effectively reverse engineering the type parametricity of those struc-
tures).

• Ajax has the only object modelling tool able to automatically and soundly “split”
classes in the model.

1.3 Contributions
This thesis makes the following technical contributions:

• It introduces and evaluates new techniques for performing generalized context-sensi-
tive alias analysis of Java code. These techniques extend previously published work in
several directions.

• It defines the value-point relation, and uses it to describe a flexible and general inter-
face for efficiently transmitting generalized alias information from analyses to tools
and other analyses. The ideas behind the value-point relation are not new, but the rela-
tion has not previously been formally specified and used as the basis for an implemen-
tation. Similarly, the interface between tools and analyses formalizes and generalizes
some existing ideas.

• It demonstrates a variety of tools that programmers can use to analyze Java programs,
including a tool for building object models and a tool that proves the safety of down-
casts associated with the use of Java generic containers.

• It shows how all the above contributions are achieved in the context of the full Java lan-
guage and realistic Java programs. This context imposes some fundamental difficulties
that must be faced by any system for global static analysis. The thesis explains the dif-
ficulties and how they are addressed by Ajax.

1.4 Thesis Overview
The thesis comprises five major sections.

The first section of the thesis introduces my work and places it in the context of other work
on program analysis and software engineering. Chapter 2 surveys the related work and
discusses its relationship to Ajax.

The second section of the thesis explains the architecture of Ajax, in particular the “value-
point relation” interface that separates tools from analyses. In Chapter 3, I introduce the
VPR abstraction and describe how it is used to communicate alias information. It takes
some thought to actually realize this abstraction in a way that permits efficient implemen-
tation; the resulting interface is described in Chapter 4. In Chapter 5, I present an extension
of RTA as an example of how an analysis can implement the VPR interface.

The third section of the thesis describes Ajax’s SEMI analysis. Chapter 6 formally defines
the analysis over a subset of the Java bytecode language, and proves that the analysis is
sound. Perhaps surprisingly, the proof reveals that the soundness of SEMI does not depend

31

on any static type safety properties of the analyzed program; if the class file can be parsed,
then the code can be correctly analyzed. Chapter 7 describes some of the actual implemen-
tation details, in particular those that aim to improve performance. Unfortunately Java has
some features that are hard to treat with global static analysis; these features are discussed
in Chapter 8.

The fourth section of the thesis is a description of five tools built using Ajax, along with
quantitative and qualitative evaluations of those tools using a suite of example programs.
The example programs — which include “real-life” programs such as MDYDF and some
large GUI applications, along with the standard Java library — are described in Chapter 9.
Chapter 9 also presents quantitative results for two tools: one for resolving dynamic
method invocations, and one for finding dead code. This chapter focuses on comparing the
effectiveness of different analysis engines in different configurations. In Chapter 10 I
present and evaluate a tool for checking the validity of downcasts. Chapter 11 describes the
implementation and results of a tool for producing object models (similar to storage shape
graphs), which requires the use of multiple VPR queries and some amount of post-
processing. In Chapter 12, I present “JGrep,” a simple tool with a variety of uses, that
simply scans for certain kinds of aliases to expressions specified by the user.

Chapter 13 contains the conclusions of the thesis. In brief, I have achieved the main goal of
the thesis: Ajax performs sound, static, global alias analysis; provides tools to answer
programmers’ questions using this information; gives results significantly more useful than
those obtainable using previous systems; and is practically applicable to real programs and
problems. However, I have identified some major barriers to adoption for general purpose,
large scale programming. One problem is that the analysis is still not scalable enough;
SEMI consumes too many resources and seems less accurate as programs get larger. More
importantly, most real Java programs use language features — such as reflection and
dynamic loading — that are inherently inimical to sound global static analysis.

32

33

2 Related Work

2.1 Introduction
Much work has been done in areas related to this thesis. The Ajax analysis engines are
related to work on global flow and closure analysis, alias analysis, and type inference
systems. The Ajax tools are similar to previous systems for program understanding.

As discussed in Section 1.2.1, Ajax separates analyses from tools. Analyses compute
generalized alias information about a program, and tools consume the information. Ajax is
the only toolkit able to provide alias information directly to tools in a clean, efficient and
analysis-independent way.

The SEMI analysis engine also has unique properties. It is designed to handle real programs
using modern features such as objects and many levels of indirection. No other alias
analysis engine combines context sensitivity and higher-order control flow analysis with
full support for a modern programming language and the ability to handle realistically large
programs. SEMI is also the only engine for any language which uses polymorphic recursion
and also distinguishes different fields of structures.

Ajax provides some unique tools to demonstrate its power. Its downcast checking tool is
the only system able to prove the safety of Java downcasts related to generic data structures
(effectively reverse engineering the type parametricity of those structures). Ajax also
provides the only object modelling tool able to “split” classes in the model both automati-
cally and soundly; see Chapter 11 for details.

2.2 Program Analyses
This section describes related work in program analysis. Section 2.2.1 explains why it is
important to distinguish fundamental analysis techniques from the particular problems to
which they are applied. Sections 2.2.2 and 2.2.3 define some terms useful for classifying
analyses, and give some general comments about interpreting the results of work in this
area. The following sections describe the actual related work, clustered according to the
characteristics of each analysis technique.

The final sections deal with work that is not about specific program analysis techniques.
Section 2.2.8 covers type inference for type checking in programming languages. Section
2.2.9 presents work on composing analyses, and Section 2.2.10 compares program analysis
toolkits.

2.2.1 Distinguishing Analysis Techniques from Analysis Problems
The problems of “flow analysis,” “closure analysis,” “higher-order control-flow analysis,”
“alias analysis,” and “concrete type inference” are all closely related, being attempts to

34

automatically and statically characterize the values of program variables. They differ only
in the types of the values they characterize and in the kinds of characterizations they make.

The same basic analysis techniques are often applied to different problems to yield appar-
ently different solutions. For example, a closure analysis is so called because it determines
which function bodies may be evaluated to by an expression denoting a higher-order
function. Alias analysis is so called because it determines which abstract memory locations
may be evaluated to by an expression denoting a pointer value. However, despite the
different contexts, and often radically different presentation styles, the same techniques can
be used to solve both problems. (Some alias analysis techniques are applicable only to first-
order code, limiting their utility for closure analysis.)

Prior to Ajax, applying an existing analysis technique to a new problem domain often
required significant effort. For example, researchers first described how to use declared
type information to resolve higher-order control flow [22] and then later showed how to use
the same techniques to perform general alias analysis [23]. As discussed in Section 1.2.1,
Ajax completely separates analyses from problem contexts. In Ajax, matching an analysis
to a problem context is a simple runtime configuration decision. No prior work has this
property.

As well as adding useful implementation flexibility, the decoupling of analysis techniques
from problem contexts makes for easier comparison of the underlying techniques. For
example, in Chapter 5 I show that the two analyses mentioned above, both based on
declared types and superficially similar, are actually subtly different in precision.

In this discussion, I deemphasize the original context in which work was presented and
focus on underlying techniques.

2.2.2 Classifying Analyses
It is helpful to classify analyses according to whether they possess “flow sensitivity” and/
or “context sensitivity”. These terms are used informally and inconsistently in the liter-
ature. I adopt the following definitions:

• An analysis is flow sensitive if, when expressed in the form of constraints, it uses inclu-
sion (subtype or subset) constraints.

The intuition behind flow sensitivity is that, considering the program fragment “if x then y
else z”, a flow sensitive analysis can determine that the result is either y or z while still
distinguishing y and z.

Many authors use “flow sensitive” to mean that the analysis may produce different results
depending on the ordering of statements within a method or function. However, with this
definition, any analysis can trivially be made flow-sensitive simply by converting the
program to single static assignment form (for local variables) as the first phase of the
analysis. Therefore, such a definition does not usefully characterize the analysis technique
itself.

• An analysis is context sensitive if, when expressed in the form of constraints, it is possi-
ble for two occurrences of the same program variable to induce equality or inclusion
constraints whose sets of free variables are disjoint.

35

The intuition behind context sensitivity is that the information obtained by a context
sensitive algorithm will not necessarily be improved by duplicating code that is used
multiple times in the analyzed programs. This includes analyses described as “polyvariant”
or “polymorphic,” and also some uses of intersection types [59].

Both of these definitions refer to data flow sensitivity, i.e., they describe the kinds of
constraints used to approximate data flow in the program. I am not concerned with control
flow sensitivity.

These crude definitions can be usefully applied to most of the related work. They are used
inconsistently in the literature, and therefore other authors may apply them differently.

2.2.3 Describing Results
I deliberately emphasize performance demonstrated in practice over asymptotic worst-case
complexity. Complexity results can be very misleading because real programs almost
always have characteristic properties that prevent them from triggering the worst-case
behavior of many algorithms (ML type inference is the classic example). Unfortunately,
published benchmark results can also be misleading, because real programs almost always
have properties (such as internal code reuse) that are not exhibited by most small
benchmark programs.

Many authors report results in terms of the number of abstract locations associated with
load or store operations in the program (i.e., sizes of points-to sets). Unfortunately, this
metric is not very useful, because the domain of abstract locations often varies from
analysis to analysis. Indeed, type inference analyses do not directly define a domain of
abstract locations. Furthermore, it is not clear how the sizes of the sets relate to the utility
of the results. An analysis that maps the result of every C PDOORF operation to the same
abstract location could easily produce very small points-to sets but be absolutely useless in
practice. Measurements that relate the dynamic behavior of a program to its static approx-
imation, such as the work of Grove et al. [37], are much more useful.

Many of the alias analyses presented below assume that pointed-to memory locations can
have only one outgoing pointer, or in other words, every structure can have only one field.
For structures with more than one field, the fields are treated as one and not distinguished.
This can drastically change the performance characteristics of an analysis, because it effec-
tively reduces program data structure shape graphs from branching trees to linear
sequences, and ensures that all recursive structures become pure cycles. This approxi-
mation is so common that it is not always clearly stated.

2.2.4 Flow Sensitive, Context Insensitive Analyses
One area of analysis where scalability is often an explicit goal is alias analysis and related
problems, such as side effect estimation.

Andersen [5] gives a simple flow-sensitive algorithm based on inclusion constraints for
alias analysis of C programs. It is often thought of as context-sensitive, because passing a
parameter to a called procedure is treated as assignment of the actual parameter to the
formal parameter; flow sensitivity ensures that different actual parameters at different call
sites can be distinguished even when they map onto the same formal parameter. Unfortu-
nately the result of a called procedure is never handled context sensitively; a returned

36

pointer always maps to the same set of abstract locations regardless of the calling context.
Thus, if access to object fields is consistently performed through accessor methods of the
object (as is often the case in Java programs), Andersen’s algorithm is equivalent to
requiring, for each declared field of a class, a single abstract storage location that summa-
rizes the contents of every runtime instance of that field.

In a series of reports [30] [75], Aiken and his collaborators describe methods for improving
the performance of inclusion-based analyses such as Andersen’s algorithm. This work is
almost exclusively aimed at analyzing large C programs and does not consider context
sensitivity. Their work makes Andersen’s algorithm practically applicable to large
programs. Note however that even their most recent results make the “one field per
structure” approximation; this is especially significant because their “projection merging”
technique relies on type constructors having small arity.

Rountev, Milanova and Ryder [66] extend the improved algorithm to model multiple fields
per object, and apply it to Java programs. Their method effectively transforms programs to
first-order code before analysis, using declared type information and analysis of the class
hierarchy to determine possible callees of indirect method calls. They do not attempt to
handle reflection and completely ignore the effects of library code; therefore it is difficult
to interpret their results. In particular, the numbers of methods they find to be dead in their
test programs are suspiciously large.

A classic approach to “higher order control flow analysis” (“CFA”) was presented by
Shivers [71]. Heintze [39] introduced set-based analysis. Both of these techniques can be
thought of as methods for higher-order control flow analysis using inclusion constraints.
Since then, much work has been done to decrease the time and space requirements of these
techniques, especially when some kind of context sensitivity is required.

Heintze and McAllester [41] describe an implementation of CFA that answers certain
questions in linear time for programs that have types that are bounded in size. Unfortu-
nately this approach cannot be directly applied to C and Java programs because its
treatment of recursive types is based on ML datatypes. If the entire Object type were treated
as one datatype, there would be a great loss of accuracy: it would be impossible to distin-
guish different fields of the same object (other than scalar fields). This is because an ML
datatype has a fixed pattern of type recursion, so modelling Object with a datatype requires
all fields holding object references to have the same type as the containing object. Heintze
and McAllester's analysis uses type information to guide its approximations for dealing
with recursive types, and in this case it will resort to the gross approximation mentioned
above. Another problem with their method is that extending it with some kind of
polyvariance or polymorphism could lead to serious performance problems.

Flanagan and Felleisen [33] describe an implementation of set-based analysis designed to
handle large programs. It analyzes each component separately, generating a collection of
set constraints that approximate the behavior of the component, then simplifying the
constraints. Finally the sets of simplified constraints are combined and solved. This reduces
the amount of space required to analyze an entire program. The improvement over the basic
algorithm is very impressive, but the largest program analyzed is 18,000 lines of Scheme,
so it is difficult to draw conclusions about scalability, or about its behavior on object
oriented programs.

37

DeFouw, Grove and Chambers [21] consider a framework of “fast” algorithms posessing
varying degrees of flow sensitivity and ranging from linear to cubic time complexity in the
size of the program. Sudaresan et al. [76] present new algorithms in this class, as do Tip
and Palsberg [80]. All these algorithms could easily and profitably be implemented to
produce VPR approximations in Ajax.

2.2.5 Flow Sensitive, Context Sensitive Analyses
Ruf [67] compares two flow-sensitive algorithms, one context-sensitive and the other
context-insensitive. The sets of possible locations at each load or store were almost
identical, leading him to conclude that for those benchmarks, context sensitivity was
worthless. However, he suggests in the paper that those results may not generalize to larger
programs. (The largest program considered was less than 7,000 lines of C.)

A similar study was done by Foster et al. [34]; they conclude that adding context sensitivity
improves the accuracy of a flow insensitive analysis, but not a flow sensitive analysis
(Andersen’s algorithm). Unfortunately their context-sensitive analyses do not distinguish
memory objects created by the same textual occurrence of “malloc”, and therefore may be
failing to exploit some of the power of context sensitivity (for example, by failing to distin-
guish instances of heap-allocated abstract data types, which Lackwit and Ajax are able to
do). They observe that the main advantage a true context-sensitive algorithm has over a
flow-sensitive algorithm (such as Andersen’s algorithm) is that results or “out parameters”
of function calls can be distinguished in different contexts, and that their C programs do not
exhibit much of this kind of polymorphism, functions being mostly executed for their side
effects. However, Java and C++ encourage reads of object state to be encapsulated in
accessor methods, so “result polymorphism” is much more common in programs for these
languages.

Ryder and her collaborators [74] [14] developed a series of algorithms for large-scale flow-
sensitive alias analysis, and embodied them in a toolkit. Their approach is based on the
propagation of “points-to sets” encoding the aliasing relationships that hold at each
program point. Each points-to set is a set of abstract locations that a pointer may be
referring to. This basic method is extended to handle higher-order code (by dynamically
updating a call graph and incrementally propagating information between new callees and
callers); other extensions are introduced to handle structures, exceptions and other modern
language features. Their most sophisticated general-purpose algorithm which is also
context-sensitive [14] is only demonstrated on programs with less than 7,000 lines of C++
code. (It does not explicitly handle higher-order code; the programs are first reduced to
first-order by applying class hierarchy analysis.) Also, they have one abstract location for
each occurrence of a call to “malloc” in the source code. Therefore this analysis can never
treat memory allocation context-sensitively, and can never distinguish instances of abstract
data types which are allocated by a common constructor function.

Wilson and Lam [84] give an algorithm for context-sensitive, flow-sensitive alias analysis
for C programs that computes abstractions of procedures, called “partial transfer
functions”, that depend on the calling context but can often be reused between calling
contexts (often, only one PTF is ever computed for a procedure). Unfortunately, they only
report results for small, mostly numeric applications (no larger than 5,000 lines), though
their results are excellent. Because their PTFs depend on the alias patterns in the calling

38

context, and in particular depend on the actual values of function pointers passed in by the
caller, it is not clear how much expensive reanalysis would be required for larger programs
with complex data structures and/or use of function pointers (object oriented programs fall
into this category). They give no measurements of the quality of the results of their
algorithm. Also, they only analyzed C programs with mostly first-order code.

Cheng and Hwu [16] describe another PTF-based technique that trades off accuracy in
exchange for better scalability. Their system has been successfully used as part of an
optimizing compiler for the C SPEC benchmarks. According to my definitions, it is both
flow sensitive and context sensitive, but it does make a number of approximations that
make it hard to compare with other algorithms. It is unclear how it would fare on object-
oriented programs.

Plevyak’s analysis [63] for object-oriented programs is based on “adaptive splitting,”
which dynamically adds context and flow sensitivity when needed to improve the accuracy
of the analysis on some particular task. The analysis is used as the basis for a number of
optimizations in an optimizing compiler for a Java-like language, ICC++. The analysis
looks promising but, as is often the case, only relative small programs are targeted (up to
25,000 lines in later work [24], which does not report absolute performance results) and
direct comparisons with other systems are difficult.

Grove, Dean, DeFouw and Chambers [37] survey a number of algorithms for “call graph
construction” for object oriented languages. The algorithms studied include those of
Palsberg and Schwartzbach [60], Oxhøj, Palsberg and Schwartzbach [56], and Agesen [1].
The call graph construction problem is essentially the same as higher-order control flow
analysis: identify the possible targets of an indirect function (or procedure, or method)
invocation. They conclude “our experiments demonstrated that scalability problems
prevent the flow-sensitive algorithms from being applied beyond the domain of small
benchmark [Cecil] programs.” All of the context-sensitive algorithms they consider are
also flow-sensitive. The algorithms performed much better on Java programs, presumably
because Java is not as “pure” an object-oriented language as Cecil and therefore method
dispatches are less ubiquitous.

Their results show that for resolving dispatches, adding flow sensitivity makes more
difference than adding context-sensitivity, if the context-sensitive analysis is also flow
sensitive. Unfortunately it is hard to compare their results to mine, because our systems
make different assumptions. For example, we handle library code differently — see
Chapter 8.

Fähndrich and Aiken [29] describe how to construct an interesting analysis framework that
incorporates inclusion constraints and polymorphism, but uses equational (i.e., flow insen-
sitive) constraints judiciously to improve the efficiency of the algorithm, where loss of
information is not as important. They apply the framework to the problem of inferring
uncaught exceptions in ML programs, but provide very little information on the actual
performance of their algorithm.

39

2.2.6 Simpler Analyses
In response to the expense of applying known flow-sensitive or context-sensitive analyses,
researchers have developed fast, but somewhat crude algorithms for answering various
program analysis questions, mostly in the context of compilation and optimization.

A classic algorithm for determining the possible targets of a method call is “class hierarchy
analysis.” In a statically typed language, it examines the class that the source program
declared for the object reference in a method call; the run-time class of the object must be
a subclass of the declared class, and so the possible targets of the dispatch are the method
in the declared class (if there is one), and any overriding method declarations in those
subclasses [32, 20, both cited in 9]. Even languages such as Smalltalk that lack a static type
discipline can use similar approaches, by computing the set of classes which declare or
inherit a method implementation compatible with the call.

Diwan, Moss and McKinley [22] [23] extend this basic method with intraprocedural flow
analysis and some very simple (context insensitive) interprocedural propagation and
handling of data structures, resulting in an analysis that is still linear in practice. Their
algorithms are quite effective for their benchmarks, but the benchmarks are mostly small.
In their system for resolving dynamic method invocations [22], the only program
(“Trestle”) that consists of more than 20,000 lines of code gives their second-poorest result,
resolving almost none of the 20% or so dynamic method invocations that are invoked at
monomorphic call sites (i.e., call sites observed always to call the same method implemen-
tation at run-time). Interestingly, they comment that this program is the only one of their
benchmarks that might benefit significantly from context sensitivity.

Bacon and Sweeney [9] extend class hierarchy analysis with “Rapid Type Analysis,” which
essentially eliminates dead code and classes in C++ programs, by starting with the
assumption that only “main” is called and adding in classes, procedures and methods as
necessary until a safe approximation is reached. The analysis runs in linear time and gives
good results for many programs, particularly because stripping out entire unused classes
can often improve the results of class hierarchy analysis. However, most of their bench-
marks do not exploit subclass polymorphism, and the benchmarks are mostly small (only
one has more than 20,000 lines of code). An interesting lesson from their work is that it is
highly desirable for an analysis to ignore code shown to be dead. RTA achieves this by
approximating the set of live methods from below; Ajax generalizes this strategy and uses
it for all its analyses. Also, because of RTA’s simplicity, efficiency and effectiveness, I
have used it as the basis for one of the Ajax analysis engines.

Steensgaard [72] applied a very simple type inference scheme to analyze aliasing for C
programs. In its original incarnation, it did not distinguish members of the same record, and
it was context and flow insensitive. The ability to distinguish record members was added
in later work [73]. In practice, these schemes scale to very large programs with millions of
lines of code. Other variations have been created which introduce carefully limited flow
sensitivity while retaining scalability [19].

Heintze [40] describes extensions of the equivalence results of Palsberg and O'Keefe [58]
that, among other things, show the equivalence of unification-based type inference (i.e.,
without subtyping) to a simple closure analysis. There are no empirical results, and
polymorphic type systems are not treated. The type system obtained is very similar to that

40

used for binding time analysis by Bondorf and Jørgensen [8]. The analysis is more powerful
than Steensgaard's [72], but less powerful than Wright and Cartwright's [85] (see below).

2.2.7 Flow Insensitive, Context Sensitive Analyses
Several researchers have produced flow insensitive, context sensitive program analyses
based on the Hindley-Milner algorithm for inferring polymorphic types in languages based
on lambda calculi [49]. This algorithm is attractive because of its exceptional simplicity, its
elegant handling of higher-order code and complex data structures, and its proven
scalability in some contexts, such as type inference for ML [50].

Tofte and Talpin's region inference [81] is somewhat similar to the SEMI algorithm used
in Ajax, partly because it uses polymorphic recursion [42]. There are significant differ-
ences, however. Their system is unnecessarily complex (for my purposes) because it
includes effect inference, which I do not need. On the other hand, their treatment of
recursive types is insufficient for my needs because they analyze ML programs which have
explicit datatype declarations describing the recursive types. Their use of polymorphic
recursion is also limited to the region variables, but my usage is much more general. Also,
my work is in totally different application domains from theirs, so the results are incompa-
rable.

Wright and Cartwright's soft typing system for Scheme [85] handles recursive types,
records, and polymorphism, but it does not distinguish different instances of the same basic
type, which is a fundamental requirement for many of my applications. For example, if two
variables both refer to lists of integers, Soft Scheme must assume that the references are
aliased.

Lackwit [54] [55] is a system using polymorphic type inference to perform alias analyis of
large C programs. It was the direct predecessor to Ajax. Lackwit’s analysis worked well —
analyzing more than 100,000 lines of code in less than 64MB of RAM — and handled
recursive types, structures, and some uses of type casting. However SEMI improves on it
in several ways, as discussed in Section 1.2.3. Also, the design of Ajax as a “tool suite”
stems directly from the shortcomings of Lackwit as an “all in one” tool.

Liang and Harrold [62] constructed a similar analysis for C programs by extending Steens-
gaard’s algorithm. They do not distinguish structure fields or handle higher-order code.
Their test programs have less than 25,000 lines of code.

Fähndrich et al. [31] built an analysis similar to Lackwit, adding polymorphic recursion and
“polarity” information to instantiation constraints. The polarity information improves
accuracy without much effect on performance. They achieve good scalability results on C
programs, but their system is not discriminating between the fields of structures, which
avoids some of the performance problems which I had to address in SEMI. My SEMI
analysis could exploit polarity information in the same way to improve its accuracy.

Pessaux and Leroy [61] created an analysis for finding uncaught exceptions in O’Caml
programs. Previous approaches had used inclusion constraints; they abandoned these in
favor of unification-based type inference and polymorphic recursion. They have some
interesting comments about the tradeoffs involved; they saw little degradation in accuracy,
and were actually able to increase precision because the simpler technology allowed them
to build a more complete analysis. Their analysis is impressive; they can analyze nearly

41

20,000 lines of (non-object-oriented) O’Caml code. Because they are interested in recov-
ering only the concrete types of exceptions which can be thrown, their analysis and results
are not directly comparable with systems such as Ajax.

There has been much recent work on specialised alias analyses for Java for tasks such as
escape analysis and synchronization removal [17] [10] [11] [83] [4]. The analysis most
similar to SEMI is Ruf’s [69]. It computes similar information to Ajax, partitioning object
references into equivalence classes and propagating information from callees to callers in
a context-sensitive manner. His analysis is much faster than SEMI. This is partly because
it is applied to programs that have already been transformed to be first-order, and it does
not support polymorphic recursion. He also uses several tricks to improve performance for
his particular task. Even when SEMI is configured to reduce the program to first-order
before analysis, and full polymorphic recursion is disabled, Ruf’s analysis is still much
faster. This indicates that when polymorphic recursion or incremental analysis are not
required, deterministic propagation of summaries along the call graph is much more
efficient than using a general incremental constraint system like SEMI. Lackwit used a
similar single-pass deterministic algorithm to propagate type information from the leaves
of the graph of program declarations up to the root, and it also seems to be much faster than
SEMI.

2.2.8 Type Inference for Object Oriented Languages
Many researchers have developed sophisticated type inference systems, and there has been
much recent work on integrating object-oriented features into languages with type
inference. These systems mostly rely on introducing inclusion (subtyping) constraints, and
their performance is usually not evaluated. Furthermore, as for the soft typing system
discussed above, these inference systems are oriented towards finding type errors and do
not attempt to distinguish values with the same concrete type (e.g., two integers, or two
objects with identical structure).

Although not for object oriented programs, Henglein’s exposition of type inference for
polymorphic recursion [42] was a major influence on my work and the work of others.

Eifrig, Smith and Trifonov [27] give a rich type inference system for languages with object
oriented features (with support for state and records). There is no mention at all of any
implementation or its performance.

Palsberg and O'Keefe [58] prove that a certain simple type inference system with recursive
types and subtyping is equivalent to a standard closure analysis. Obviously performance
problems exhibited by flow analyses will carry over to the equivalent type inference
systems, unless we relinquish some expressive power. Context sensitive closure analyses
or polymorphic type systems are not treated.

Palsberg [57] describes a type inference algorithm for Abadi and Cardelli's object calculus.
The algorithm incorporates subtype constraints, and requires O(n3) time in the worst case
because it computes a transitive closure; empirical results are not reported. It does not
incorporate parametric polymorphism. Because the subtyping rule is based on record
extension (requiring common fields to have the same type), parametric polymorphism
would be required to ensure true context sensitivity.

42

Rémy and Vouillon [65] describe the type system of Objective Caml, which provides type
inference for an object-oriented extension of ML, without the use of subtype constraints.
They use polymorphic row variable types to write functions that are polymorphic over
object types. (Row variables range over a set of unknown fields and their types.) They
require explicit coercions in other situations (e.g., heterogeneous containers). They can
infer recursive types in function and method signatures. This type system is very close to
the type system used by SEMI, except that because their source programs have properly
block-structured declarations, they have no need for polymorphic recursion. Furthermore,
like Wright and Cartwright's Soft Scheme, the system is designed to prove type safety, and
has none of the extensions required to collect other information. Also, the language is
intended to be class-based, but class types are not suitable for my purposes. In my system,
the type inferred for an object of class A may encode information about the subclasses of
A as well, since the object could be one of those subclasses. This information is neither
needed nor allowed in O'Caml, since it breaks modularity and is not useful for
typechecking.

Duggan [25] proposes a type inference procedure for reverse engineering parameterized
types from Java code. His system is significantly more complex than SEMI and Ajax’s
downcast checker, because it is construed as a source-to-source translation from Java to
“PolyJava”, an extension of Java with bounded parameteric polymorphism. Therefore he is
concerned with ensuring that the translated code typechecks and has the same semantics as
the original code. Most importantly, he has not implemented the analysis, so its behavior in
practice is unknown.

2.2.9 Composing Analyses
Hybrid approaches to closure analysis and alias analysis have been proposed, that combine
traditional flow analysis of abstract values with type inference. Ruf [68] and Zhang, Ryder
and Landi [86] [87] suggest similar schemes for alias analysis that first apply a fast type
inference analysis, and then use the results to select a subset of the program to be analyzed
with a more expensive flow analysis to obtain more precise information for a certain set of
values. In fact, this approach can actually improve the accuracy of the results because
analyses are often precise or imprecise in different ways, and taking the intersection of the
results can be better than any single set of results. The Ajax framework explicitly supports
this kind of composition; see Section 4.4.5.

2.2.10 Analysis Toolkits
One of the strengths of Ajax is its modular design, enabling tools for different tasks to be
quickly and easily built using a simple, powerful abstraction of alias information. Two
“state of the art” toolkits for global static analysis are BANE [2] and PAF [74].

BANE [2] provides an engine for solving term equality and set inclusion constraints. It also
supports Hindley-Milner style polymorphism (but not polymorphic recursion). To
implement a task-specific tool using BANE, the implementor must create a front end to
traverse program code and build a set of constraints to be solved. The implementor must
also create a “back end” to interpret the solved constraints in order to solve the problem at
hand. In particular, the implementor must determine how to express the problem in the form
of constraints, and prove that the constraint problem corresponds to the real problem. In

43

contrast, an Ajax tool implementor is provided with the VPR abstraction of semantic infor-
mation, without having to write any front end code, and without having to worry about how
the information was produced. In most cases the implementor’s desired information can be
extracted directly from the VPR. The price is that Ajax can only provide aliasing infor-
mation; BANE could be reused in other contexts.

Like Ajax, PAF [74] computes alias analyses of programs. However, it does not provide an
abstract interface comparable to the VPR. Instead, the analyses produce “points-to sets”
listing, for each pointer dereference in the program, the abstract locations the pointer could
be pointing to. For a tool to use this information, it must encode the meaning of the abstract
locations; this is undesirable because the domain of abstract locations could change
depending on the analysis method being used. It is also undesirable because it places an
unnecessary burden of understanding on the tool implementor. Also, it is not always
efficient to explicitly convert analysis results into points-to sets and then interpret those
sets; the points-to sets can be very large. The VPR is designed to avoid this bottleneck.

2.3 Software Engineering Tools

2.3.1 Software Engineering Tools for Program Understanding
There are many tools that address aspects of the program understanding task, some built as
research projects and some as commercial products. Almost exclusively, such tools that
aim to be scalable do not rely on semantics-based analyses, but operate at the lexical or
syntactic level. For example, the products of Imagix Corporation [90] provide a number of
different views and summaries of program source code, all of which rely on lexical and
syntactic information, or on profile information gathered by running the program. The C
Information Abstraction system [15], and its successors and many other similar systems,
essentially treat a program as an abstract syntax tree without assigning meaning to the
syntax elements. In CIA, this information is imported into a database, and various relational
queries can then be used to extract useful information. For example, the tool could rapidly
locate all mentions of a particular field of a given structure type. My work extends these
ideas by providing much richer information about the semantics of the program.

Murphy and Notkin developed some lexical analyses that are particularly efficient and easy
to customize [51]. Due to its lexical nature, their tool can be more flexible (for example, it
can analyze programs written in multiple languages), and will be more efficient in most
cases. Its strength is also its weakness. By operating purely at the lexical level, it cannot
address semantic queries with the precision or soundness of semantics-based analysis.

The same researchers' Reflection Model Tool (“RMT”) [52] allows the results of a static
analysis to be presented at a more abstract level than the code, such as an architecture
diagram, and to be compared to the expectations that the user has for that level. It assumes
that the result of the source code analysis is a graph, and produces diagrams to show how
the abstracted graph differs from that expected. RMT is independent of the tool used to
analyze the source code, and my tools could be used in that role.

Bowdidge and Griswold's “Star Diagram” tool [7] and its successors aid in encapsulating
abstract data types, by presenting a special view of the program that focuses on a particular
variable. They assume that there is a single variable to be abstracted, but they discuss

44

extending their method to operate on data structures with multiple instances. They consider
operating on all data structures of a certain type, but comment “The potential shortcoming
of this approach is that two data structures of the same representation type, particularly two
arrays, might be used for sufficiently different purposes that they are not really instances of
the same type abstraction.” Ajax and SEMI solve this problem.

The Womble object modelling tool [46] uses syntactic analysis, intraprocedural analysis,
heuristics and built-in knowledge of the Java class library to produce object models [70] of
Java programs. It is not sound; its object models can fail to reveal class relationships that
actually exist in the program. In contrast, the Ajax object modelling tool is sound, and can
accurately “split” classes without being given any special information other than the code.
See Chapter 11 for more details.

2.3.2 Semantics-based Tools For Program Understanding
The majority of work from the software engineering community that tries to capture truly
semantic information is concerned with slicing [82] [78] — that is, the identification of a
subset of a program that completely determines the value of a given variable at a given
program point. This kind of information may be useful for testing, debugging and other
applications. Unfortunately, most efforts to date have failed to achieve any kind of
scalability or to operate on realistic languages and programs. The most realistic slicing tool
available is Grammatech’s CodeSurfer product [89]. CodeSurfer analyzes C programs and
relies on Andersen’s algorithm to resolve aliasing in order to compute more accurate
dataflow graphs. My work shows that alias information itself can be used to solve several
problems of interest to the software engineering community.

The Anno Domini tool [26] uses monomorphic, unification-based type inference to
compute “Y2K” type information for data in COBOL programs. Anno Domini is a tool
designed to support one task very well. Ajax is designed to enable cheap construction of
many such “domain specific” tools.

2.4 Language Semantics
This thesis presents a soundness proof for SEMI, which requires specification of the
semantics of the source language — in this case, a large subset of Java bytecode. The
semantics presented here are a correction and simplification of the work of Qian [64]. In
contrast with other semantics for Java bytecode, my semantics are completely dynamic and
rather “lax”. There are no static checks, and the only run-time checks are those necessary
to ensure deterministic and sensible execution. This is because Ajax is not concerned with
verifying the static safety of Java bytecode; in fact, the soundness proofs demonstrate that
SEMI can soundly analyze bytecode which violates any and all static safety constraints.

However, it is also true that the techniques that underly Ajax, and SEMI in particular, can
be useful in performing static typechecking of bytecode. I have done some work in this area
[53], but it is beyond the scope of this thesis.

45

3 The Value-Point Relation:
Separating Analyses from
Tools

3.1 Overview
The design of Ajax separates analyses, which produce alias information, from tools, which
consume the information. This chapter presents a high level functional specification of the
interface between tools and analyses. Chapter 4 describes details of the interface which
allow analyses and tools to work together efficiently.

3.1.1 Desirability of Simple Semantics
In previous systems, alias information is encoded in formats specific to the analysis used.
For example, many analyses compute “points-to” sets. For a pointer variable or expression
in a program, such an algorithm computes a static set of abstract locations; each abstract
location represents one or more real memory locations that the variable may point to at run
time. A tool that interprets points-to sets requires knowledge of the abstraction mapping,
which varies from analysis to analysis. Furthermore, in practice, an analysis will compute
points-to information for some subset of the pointer variables and expressions in the
program; tools need to know exactly which subset, or be able to specify it in advance. If the
analysis treats the program in some intermediate form, tools need to understand the same
format.

This dependence on details of specific analyses prevents arbitrary combination of analyses
with tools. More importantly, it also increases the cost of tool construction even if only one
analysis is provided. Tool designers must understand details of the analysis, and this
knowledge must be encoded in the tool code.

Therefore, I propose that an interface between tools and analyses should reveal as little as
possible of the mechanism of the analysis. The specification of the interface presented to a
tool, written out purely in terms of the semantics of the programming language, should be
as simple as possible.

3.1.2 The Value-Point Relation
The value-point relation (VPR) is a well-defined abstract property of Java bytecode
programs, encoding generalized alias information. The VPR for a given program is static;
it summarizes all possible executions of the program. An analysis is required to compute a
conservative approximation to the VPR, that is, any relation that includes the VPR.

46

The VPR is defined directly in terms of the Java bytecode language (“JBC”). A full formal
definition would require complete semantics for JBC, the definition of which is beyond the
scope of this thesis. Instead, the VPR is defined in terms of a subset language, “Micro” Java
bytecode (“MJBC”), for which I provide complete semantics.

3.2 Semantics of the Micro Java Bytecode Language
This section formally defines the semantics of MJBC. Both natural (untagged) and tagged
semantics are given. The style is small-step operational semantics.

3.2.1 Preamble
The MJBC language was originally based on Qian’s formalization of a JBC subset [64].

There is no single syntactic entity corresponding to a “JBC program”. At any given moment
at run time, there is a set of class files that have been loaded into the virtual machine. New
class files could be added at any time, for example, from a user-specified location in the
Internet. To avoid issues of unknown code and dynamic loading, the MJBC semantics
assume that the set of class files is fixed and that this set constitutes the entire program. I
abstract away the class file format and the linkage process, and consider a program to be a
tuple of sets and functions representing the information in the class files after parsing and
linking.

These sets and functions are described in terms of some basic types:

• ClassIdentifier, the type of abstract names for classes.

• MethodIdentifier, the type of abstract names for methods.

• FieldIdentifier, the type of abstract names for fields.

In the Java Virtual Machine, a ClassIdentifier corresponds to a fully qualified class name
paired with a reference to the class loader that loaded it. A MethodIdentifier corresponds to
a method signature including a method name, a return type and a list of parameter types
(because overloading is resolved at compile time). A FieldIdentifier corresponds to the
name of a field paired with the class in which it was declared — an object can have multiple
fields of the same name, inherited from different classes.

ClassIdentifier has a distinguished subset (UURU&ODVV,'V��UHSUHVHQWLQJ�WKH�FODVVHV�RI�H[FHS�
WLRQV�WKURZQ�E\�WKH�UXQWLPH�V\VWHP��H�J��2XW2I0HPRU\(UURU�RU�
1XOO3RLQWHU([FHSWLRQ��

There are also some frequently used compound types:

• MethodImpl� �ClassIdentifier���MethodIdentifier
Values of this type identify method implementations. The ClassIdentifier is the class
that implements the method, and the MethodIdentifier names the implemented method.
The following projection functions are useful:

MethodImplClass(classID, methodID) = classID
MethodImplName(classID, methodID) = methodID

47

• CodeLoc� �MethodImpl���=
7KLV�LV�WKH�W\SH�RI�FRGH�ORFDWLRQV��7KH�MethodImpl�LGHQWLILHV�WKH�PHWKRG�ERG\��DQG�WKH�
LQWHJHU�LV�DQ�RIIVHW�ZLWKLQ�WKH�PHWKRG¶V�FRGH� Only non-negative offsets are actually
used. The following projection functions are useful:

CodeLocMethod(method, offset) = method
CodeLocOffset(method, offset) = offset

7KH�DGGLWLRQ�RSHUDWRU�LV�RYHUORDGHG�DW����&RGH/RF���=���&RGH/RF�DV�IROORZV�

(method, offset) + disp = (method, offset + disp)

Some of the runtime structures use lists. The empty list is written as “e” and list consing is
written as “::”. For example, 3::2::1::e denotes a list of the first three positive integers.

The empty finite map is written as “[]”. The extension of a finite map M with a mapping
from k to v is written “M[k � v]”.

3.2.2 Programs
A program is a tuple of several components:

� 0DLQ���MethodImpl
7KLV�LV�WKH�LGHQWLILHU�RI�WKH�PHWKRG�WKDW�VWDUWV�WKH�SURJUDP��LW�LV�WKH�VWDWLF�PHWKRG�PDLQ�
RI�VRPH�FODVV�

• ,QLW)LHOGV���ClassIdentifier�V��FieldIdentifier�V�InitValue)
7KLV�PDSV�HDFK�FODVV�LQ�WKH�SURJUDP�WR�WKH�LQLWLDO�YDOXHV�RI�WKH�ILHOGV�ZKHQ�DQ�REMHFW�RI�
WKDW�FODVV�LV�FUHDWHG��7KXV�LW�HQFRGHV�ZKLFK�ILHOGV�DUH�SUHVHQW�LQ�DQ\�JLYHQ�FODVV�DV�ZHOO�
DV�WKHLU�GHIDXOW�YDOXHV��]HUR�IRU�VFDODUV��QXOO�IRU�REMHFW�UHIHUHQFHV���,QLW)LHOGV�LV�QRW�
GHILQHG�IRU�FODVVHV�ZKLFK�FDQQRW�EH�LQVWDQWLDWHG��L�H���LQWHUIDFHV�RU�DEVWUDFW�FODVVHV���
,QLW9DOXH�LV�VLPSO\�HLWKHU�³�´�RU�³QXOO´��FRPSOLFDWHG�LQLWLDOL]DWLRQ�H[SUHVVLRQV�DUH�
DFWXDOO\�H[HFXWHG�LQ�HDFK�REMHFW¶V�FRQVWUXFWRU�

• InitStaticFields : FieldIdentifier�V�InitValue
This finite map assigns an initial value to each static field in the program.

• 6XEFODVVHV2I���ClassIdentifier�V 3�ClassIdentifier�
7KLV�UHWXUQV�WKH�VHW�RI�VXEFODVVHV�RI�WKH�FODVV��,I�WKH�FODVV�LV�DFWXDOO\�DQ�LQWHUIDFH��LWV�
VXELQWHUIDFHV�DQG�WKH�FODVVHV�LPSOHPHQWLQJ�LW�DUH�LQFOXGHG��7KH�VXEFODVV�UHODWLRQ�LV�
UHIOH[LYHO\�DQG�WUDQVLWLYHO\�FORVHG�

• 'LVSDWFK���ClassIdentifier���MethodIdentifier�V�MethodImpl
7KLV�SDUWLDO�IXQFWLRQ�PDSV�D�FODVV�DQG�D�PHWKRG�VLJQDWXUH�WR�WKH�LPSOHPHQWDWLRQ�FDOOHG�
ZKHQ�WKH�PHWKRG�LV�LQYRNHG�RQ�DQ�REMHFW�RI�WKH�JLYHQ�FODVV�

• Instruction : CodeLoc V Inst
This maps code locations to the instructions at those locations. The set of instructions
Inst is described in Figure 3-1. Except as noted, the names of the instructions are the
same as the names of their counterparts in the official Java Virtual Machine specifica-
tion.

48

• &DWFK%ORFN2IIVHW���CodeLoc���ClassIdentifier�V�=
7KLV�SDUWLDO�IXQFWLRQ�JLYHV�WKH�FRGH�RIIVHW�RI�WKH�KDQGOHU�LQYRNHG�ZKHQ�DQ�H[FHSWLRQ�RI�
D�JLYHQ�FODVV�LV�WKURZQ�DW�D�VSHFLILHG�SURJUDP�SRLQW��,W�LV�XQGHILQHG�LI�WKH�H[FHSWLRQ�
VKRXOG�EH�SURSDJDWHG�WR�WKH�FDOOLQJ�PHWKRG��7KLV�IXQFWLRQ�LV�FRPSXWHG�IURP�³FDWFK�
UHJLRQ´�LQIRUPDWLRQ�VWRUHG�LQ�WKH�FODVV�ILOHV�

The instruction DFRQVWBQXOO pushes a null reference onto the working stack. The
ELSXVK instruction pushes an integer constant onto the stack. The LDGG instruction pops
to integers off the working stack, adds them, and pushes the result back onto the stack. The
ORDG and VWRUH instructions are used to move values between the local variable file and
the working stack. The instruction LIBFPSHT branches if the top of the stack is zero. The
JRWR instruction transfers control to another instruction within a method. Programs use the
UHWXUQ instruction to terminate the invocation of the current method and return a value to
the caller. The QHZ instruction creates a new object instance of the given class. The
JHWILHOG and SXWILHOG instructions read and write the given field of the object
indicated by the reference on top of the working stack. Similar instructions JHWVWDWLF
and SXWVWDWLF read and write static fields; no object reference is required. The
LQYRNHYLUWXDO instruction performs a dynamic method call to the method with
signature methodID as implemented by the object whose reference is the first method
parameter. The LQYRNHVWDWLF instruction performs a static function call to the given
method. Both of the method invocation instructions take the top two elements of the
working stack as the parameters to the callee method. The FKHFNFDVW instruction tests
whether the object referred to by the top of the working stack is a subclass of the class
specified in the instruction (or null); if it is, then no action is taken and the object reference
remains on the working stack, but if it is not a valid subclass, an exception is thrown. Alter-
natively, LQVWDQFHRI performs a similar check and then stores the result in a boolean

Inst ::=DFRQVWBQXOO
| ELSXVK byte
| LDGG
| ORDG index (stands for DORDG*, LORDG* forms)
| VWRUH index (stands for DVWRUH*, LVWRUH* forms)
| LIBFPSHT offset (stands for LIBLFPSHT, LIBDFPSHT)
| JRWR offset
| UHWXUQ (stands for LUHWXUQ, DUHWXUQ)
| QHZ classID
| JHWILHOG fieldID
| SXWILHOG fieldID
| JHWVWDWLF fieldID
| SXWVWDWLF fieldID
| LQYRNHYLUWXDO methodID
| LQYRNHVWDWLF methodImpl
| FKHFNFDVW classID
| LQVWDQFHRI classID
| DWKURZ

Figure 3-1. The Micro Java Bytecode instruction set

49

value on top of the stack. The check is different because LQVWDQFHRI returns false if the
argument is null. The DWKURZ instruction raises an exception; on entry to the instruction,
the top of stack holds a reference to the exception object to be raised.

The instruction set was designed to be an expressive subset of the JVM instructions, with
some streamlining, e.g., there are no per-datatype variants of ORDG/VWRUH instructions,
and all methods take exactly two parameters. (I chose two parameters because the first
parameter is usually the WKLV parameter used for dispatch, and for completeness it seems
helpful to have another parameter that is not used for dispatch.) Almost all the interesting
behaviors of Java bytecode instructions are captured in this instruction set, with the notable
omission of bytecode subroutines, which are of no importance in practice.

MJBC does not define any static constraints on the program beyond the syntactic
constraints imposed by the above definitions. In this respect it is much more lenient than
the JVM. This is useful because it shows that the definitions and proofs presented in this
thesis are independent of any particular static type discipline for JVM bytecode.

3.2.3 State
The description of state requires some additional basic types:

• ObjectReference, the type of heap locations.

• NullRef, the type of the null reference. There is just one value of this type, “null”.

7KH�W\SH�RI�YDOXHV�LV�GHILQHG�DV�

Value� �=���ObjectReference���NullRef

There is a natural embedding of InitValue into Value that maps 0 to the 0 in =, and maps
null to the null in NullRef.

The semantic rules require some additional compound types:

• HeapObj� �ClassIdentifier����FieldIdentifier�V�Value�
$�KHDS�PDSV�REMHFW�UHIHUHQFHV�WR�YDOXHV�RI�WKLV�W\SH��+HDS�REMHFWV�UHWDLQ�WKHLU�G\QDPLF�
FODVV��XVHG�WR�GLVSDWFK�YLUWXDO�PHWKRGV���DQG�WKH�FXUUHQW�YDOXHV�RI�WKHLU�ILHOGV��7KH�IRO�
ORZLQJ�SURMHFWLRQ�IXQFWLRQV�DUH�XVHIXO�

• HeapObjClass(classID, fields) = classID

• HeapObjFields(classID, fields) = fields

• StackFrame� �CodeLoc���9DOXH�OLVW����=�V�Value�
$�WXSOH�RI�WKH�IRUP��SF, 6��/��UHSUHVHQWV�WKH�VDYHG�VWDWH�RI�D�FDOOLQJ�PHWKRG��

• pc is the location of the method call instruction that transferred control to the callee.

• / is the saved local variables of the calling method, defined below.

• 6 is the saved working stack of the calling method, defined below.

$�SURJUDP�VWDWH�X�LV�D�UHFRUG�RI�WKH�IRUP

where

mode: mode pc: pc wstack: 6 locals: / mstack: - heap: + globals: *, , , , , ,[]

50

• mode ³ { RUNNING, THROWING }
THROWING indicates that the program is in the process of throwing an exception.

• pc : CodeLoc
This is the location of the next instruction to be executed.

• 6���9DOXH�OLVW
The working stack is used to evaluate expressions, and is local to the currently execut-
ing method. :KHQ�DQ�H[FHSWLRQ�LV�EHLQJ�WKURZQ��WKH�VWDFN�FRQWDLQV�D�VLQJOH�HOHPHQW�²�
D�UHIHUHQFH�WR�WKH�H[FHSWLRQ�REMHFW�EHLQJ�WKURZQ�

• /���=�V�Value
The local variable file is a finite map recording the state of the local variables. ,Q�-%&�
DQG�0-%&��ORFDO�YDULDEOHV�DUH�QXPEHUHG��QRW�QDPHG��In MJBC all methods take two
parameters, so on entry to a method, / has mappings for local variables 0 and 1, hold-
ing the actual values of the parameters.

• - : StackFrame list
This is the method invocation stack, UHFRUGLQJ�WKH�VDYHG�VWDWH�RI�WKH�PHWKRGV�DERYH�WKH�
FXUUHQWO\�H[HFXWLQJ�PHWKRG�LQ�WKH�FDOO�VWDFN�

• + : ObjectReference V HeapObj
The heap is a finite partial map from object references to the stored objects.

• * : FieldIdentifier V Value
The globals are a finite map from each static field (i.e., global variable) to its value.

To make semantic rules shorter and more readable, state records are written in the form

[elem1 � value1, ..., elemn � valuen, r]

where r is a variable denoting arbitrary values for the additional elements. However,
whenever the element mode is given a value by r, then the value is required to be RUNNING;
this is convenient because most patterns matching a state record are only applicable when
the machine is in the RUNNING state.

3.2.4 Initial State
The initial state is

>mode��RUNNING��pc��(Main, 0)��wstack��e, locals: [], mstack: e, heap: [],
globals: InitStaticFields]

MJBC does not define any notion of termination; it is not needed for the purposes of this
thesis.

3.2.5 Transition Rules
7KH�WUDQVLWLRQ�UHODWLRQ�LV�D�UHODWLRQ�RYHU�VWDWHV��,W�FRQWDLQV�DQ�HOHPHQW�X��ã�X��LI�DQG�RQO\�
LI�LQ�RQH�VWHS��WKH�SURJUDP�LQ�VWDWH�X��FDQ�SURJUHVV�WR�VWDWH�X��

,Q�JHQHUDO�D�JLYHQ�VWDWH�X��FDQ�WUDQVLWLRQ�WR�PRUH�WKDQ�RQH�SRVVLEOH�X���EHFDXVH�FHUWDLQ�
H[FHSWLRQV�FDQ�EH�³VSRQWDQHRXVO\´�UDLVHG�DW�DQ\�WLPH��E\�WUDQVLWLRQ�UXOH��������,Q�WKH�-DYD�
9LUWXDO�0DFKLQH��VXFK�H[FHSWLRQV�FDQ�RFFXU�ZKHQ�WKH�YLUWXDO�PDFKLQH�UXQV�RXW�RI�PHPRU\�

51

RU�HQFRXQWHUV�VRPH�RWKHU�NLQG�RI�FULWLFDO�HUURU���When a program encounters a runtime error
(e.g., it tries to pop an empty stack), no normal transition is possible. However, the program
is never “stuck” because it can always make a transition by raising a spontaneous
exception. This models the raising of exceptions in response to runtime errors — both
errors that would normally caught by static checks, and errors that cannot be caught stati-
cally such as failed FKHFNFDVW instructions throwing a &ODVV&DVW([FHSWLRQ.

The transition rules are given in Figure 3-2.

The exception throwing and handling mechanism requires some explanation. When an
exception is thrown (rules (20) and (21)), the current working stack is cleared and a
reference to the exception object is pushed onto it. The state switches to THROWING mode.
In THROWING mode, at each step, control either transfers to an exception handler within the
current method (rule (22)), or leaves the current method to continue exception throwing at
the caller (rule (23)). In the latter case, the new pc is the location of the method call
instruction, rather than its successor as in the case of a normal return. This is necessary for
a catch block enclosing the method call instruction to correctly catch the exception. The
state switches back to RUNNING mode when the exception is caught by a handler.

3.2.6 Differences between JBC and MJBC
7KH�IROORZLQJ�IHDWXUHV�RI�IXOO�-%&�KDYH�EHHQ�RPLWWHG�RU�DEVWUDFWHG�DZD\�LQ�0-%&��WKUHDGV�
DQG�WKHLU�DVVRFLDWHG�V\QFKURQL]DWLRQ�RSHUDWLRQV��DUUD\V��VFDODU�W\SHV�RWKHU�WKDQ�LQW��ILQLWH�
SUHFLVLRQ�ILQLWH�ELW�ZLGWK�DULWKPHWLF��DFFHVV�FRQWURO��YLD�SDFNDJHV��SXEOLF��SULYDWH�
DQG�SURWHFWHG���QDWLYH�PHWKRGV��WKH�IDFW�WKDW�LQVWUXFWLRQV�KDYH�YDULDEOH�OHQJWKV��
FRPSOH[�FRQWURO�LQVWUXFWLRQV�VXFK�DV�ORRNXSVZLWFK�DQG�WDEOHVZLWFK��YDULDWLRQV�RQ�
VLPSOH�LQVWUXFWLRQV�VXFK�DV�ZLGH��LQVWUXFWLRQV�ZLWK�WKH�VDPH�VHPDQWLFV�WKDW�YDU\�RQO\�LQ�
WKH�W\SHV�RI�WKHLU�DUJXPHQWV��ZKLFK�H[LVW�WR�DLG�WKH�-DYD�E\WHFRGH�YHULILHU���FRQYHQLHQFH�
LQVWUXFWLRQV�IRU�PDQLSXODWLQJ�WKH�VWDFN�VXFK�DV�GXS��WKH�IXOO�VXLWH�RI�DULWKPHWLF�RSHUDWRUV��
WKH�VSHFLDOL]HG�PHWKRG�LQYRFDWLRQ�LQVWUXFWLRQV�LQYRNHVSHFLDO�DQG�
LQYRNHLQWHUIDFH��PHWKRGV�WKDW�UHWXUQ�YRLG��PHWKRGV�WKDW�WDNH�PRUH�RU�OHVV�WKDQ�WZR�
SDUDPHWHUV��E\WHFRGH�VXEURXWLQHV��WKH�UXQWLPH�HUURU�H[FHSWLRQV�WKURZQ�E\�YDULRXV�LQVWUXF�
WLRQV��H�J���1XOO3RLQWHU([FHSWLRQ���JDUEDJH�FROOHFWLRQ�DQG�ILQDOL]DWLRQ��PXOWLSOH�
FODVVORDGHUV��GHWDLOV�RI�WKH�FODVV�ILOH�IRUPDW��DQG�G\QDPLF�ORDGLQJ�

However, it does have the stack-based instruction set, local variables, integer and object
types (with classes and interfaces), exceptions (both explicitly and implicitly thrown) and
exception handling, dynamic type checks, and virtual and static methods and fields. The
JBC does not have constructors, since these are reduced to method calls at the bytecode
level; therefore MJBC does not have constructors either.

The features abstracted away in MJBC to simplify the formal presentation are still handled
by the Ajax implementation. Most of the features are straightforward. Chapter 8 discusses
issues related to native code and dynamic loading.

The Java Virtual Machine calls the ILQDOL]H�� methods on objects as they are garbage
collected. This can happen at any time after the object becomes garbage. Ajax models this
as a call to ILQDOL]H�� on every object that can happen at any time. This is slightly more
general than the actual behavior, but none of the implemented or contemplated analyses
would be sensitive enough to detect the difference.

52

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 3-2. Rules defining the transition relation

Instruction pc() DFRQVWBQXOO=

pc: pc wstack: 6 r, ,[] pc: pc 1+ wstack: null 6:: r, ,[]ã

Instruction pc() ELSXVK byte=

pc: pc wstack: 6 r, ,[] pc: pc 1+ wstack: byte 6:: r, ,[]ã

Instruction pc() LDGG=

pc: pc wstack: v1 v2 6:: :: r, ,[] pc: pc 1+ wstack: v1 v2+() 6:: r, ,[]ã
--

Instruction pc() ORDG index=

pc: pc wstack: 6 locals: / r, , ,[] pc: pc 1+ wstack: / index() 6:: locals: / r, , ,[]ã

Instruction pc() VWRUH index=

pc: pc wstack: Y 6:: locals: / r, , ,[] pc: pc 1+ wstack: 6 locals: / index v�[] r, , ,[]ã
--

Instruction pc() LIBFPSHT offset=

Y 0�

pc: pc wstack: v 6:: r, ,[] pc: pc 1+ wstack: 6 r, ,[]ã
--

Instruction pc() LIBFPSHT offset=

Y 0=

pc: pc wstack: v 6:: r, ,[] pc: pc offset+ wstack: 6 r, ,[]ã
--

Instruction pc() JRWR offset=

pc: pc r,[] pc: pc offset+ r,[]ã

Instruction pc() UHWXUQ=

pc: pc wstack: Y 6:: locals: / mstack: pc� 6� /�, ,() -:: r, , , ,[]

ã pc: pc� 1+ wstack: Y 6�:: locals: /� mstack: - r, , , ,[]

--

53

(10)

(11)

(12)

(13)

(14)

(15)

Figure 3-2. Rules defining the transition relation

Instruction pc() QHZ classID=

ref dom +´

pc: pc wstack: 6 heap: + r, , ,[]

ã pc: pc 1+ wstack: ref 6:: heap: + ref classID InitFields classID(),()�[] r, , ,[]

--

Instruction pc() JHWILHOG fieldID=

pc: pc wstack: ref 6:: heap: + r, , ,[]

ã pc: pc 1+ wstack: HeapObjFields + ref()() fieldID() 6:: heap: + r, , ,[]

Instruction pc() SXWILHOG fieldID=

classID HeapObjClass + ref()()=

fields HeapObjFields + ref()()=

ILHOG,' dom InitFields FODVV,'()³

pc: pc wstack: Y ref 6:: :: heap: + r, , ,[]

ã pc: pc 1+ wstack: 6 heap: + ref classID fields fieldID Y�[],()�[] r, , ,[]

Instruction pc() JHWVWDWLF fieldID=

pc: pc wstack: 6 globals: * r, , ,[] pc: pc 1+ wstack: * fieldID() 6:: globals: * r, , ,[]ã
--

Instruction pc() SXWVWDWLF fieldID=

ILHOG,' dom *³

pc: pc wstack: Y 6:: globals: * r, , ,[]

ã pc: pc 1+ wstack: 6 globals: * fieldID Y�[] r, , ,[]

Instruction pc() LQYRNHYLUWXDO methodID=

pc� Dispatch HeapObjClass + Y0()() methodID,() 0,()=

pc: pc wstack: Y1 Y0 6:: :: locals: / mstack: - heap: + r, , , , ,[]

ã pc: pc� wstack: e locals: [0 Y� 0, 1 Y� 1] mstack: pc 6 /, ,() -:: heap: + r, , , , ,[]

54

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Figure 3-2. Rules defining the transition relation

Instruction pc() LQYRNHVWDWLF methodImpl=

pc� methodImpl 0,()=

pc: pc wstack: Y1 Y0 6:: :: locals: / mstack: - r, , , ,[]

ã pc: pc� wstack: e locals: [0 Y� 0, 1 Y� 1] mstack: pc 6 /, ,() -:: r, , , ,[]

--

Instruction pc() FKHFNFDVW classID=

ref null= HeapObjClass + ref()() SubclassesOf classID()³¿

pc: pc wstack: ref 6:: heap: + r, , ,[] pc: pc 1+ wstack: ref 6:: heap: + r, , ,[]ã
--

Instruction pc() LQVWDQFHRI classID=

HeapObjClass + ref()() SubclassesOf classID()³

pc: pc wstack: ref 6:: heap: + r, , ,[] pc: pc 1+ wstack: 1 6:: heap: + r, , ,[]ã
--

Instruction pc() LQVWDQFHRI classID=

ref null= HeapObjClass + ref()() SubclassesOf classID()´¿

pc: pc wstack: ref 6:: heap: + r, , ,[] pc: pc 1+ wstack: 0 6:: heap: + r, , ,[]ã
--

Instruction pc() DWKURZ=

UHI null�

mode: RUNNING pc: pc wstack: UHI 6:: r, , ,[]

ã mode: THROWING pc: pc wstack: UHI e:: r, , ,[]

--

classID ErrorClassIDs³

ref dom +´

obj classID InitFields classID(),()=

mode: RUNNING pc: pc wstack: 6 heap: + r, , , ,[]

ã mode: THROWING pc: pc wstack: ref e:: heap: + ref obj�[] r, , , ,[]

--

handler CatchBlockOffset method offset,() HeapObjClass + ref()(),()=

mode: THROWING pc: method offset,() wstack: ref e:: heap: + r, , , ,[]

ã mode: RUNNING pc: method handler,() wstack: ref e:: heap: + r, , , ,[]

55

The most significant issue is threads. Ajax uses the definition of the VPR presented here,
but assumes that a program state includes a list of thread stacks, and that the semantics of
JBC include non-deterministic context switching transitions. Handling threads has no
practical consequences for the implementation of Ajax, because the analyses implemented
in Ajax to date are oblivious to the order in which statements are executed (as far as the
heap is concerned, which is where all inter-thread interference occurs).

3.3 The Value-Point Relation

3.3.1 Bytecode Expressions
To describe the properties of a program, it is useful to be able to name values such as stack
elements and local variables at particular program points. Thus I define a small language
of “bytecode expressions”, shown in Figure 3-3.

$�E\WHFRGH�H[SUHVVLRQ�LQFOXGHV�D�FRGH�ORFDWLRQ�IRU�FRQWH[W��D�BExpRoot�GHVLJQDWLQJ�D�VWDFN�
HOHPHQW��ORFDO�YDULDEOH��VWDWLF�ILHOG�RU�FXUUHQWO\�WKURZLQJ�H[FHSWLRQ��DQG�DQ�RSWLRQDO�OLVW�RI�
ILHOGV�WR�EH�GHUHIHUHQFHG��(DFK�)LHOG,'�LV�IXOO\�TXDOLILHG�E\�WKH�QDPH�RI�WKH�FODVV�WKH�ILHOG�
LV�GHFODUHG�LQ�

*LYHQ�D�SURJUDP�VWDWH��D�E\WHFRGH�H[SUHVVLRQ�FDQ�EH�HYDOXDWHG�WR�D�YDOXH��$Q�H[SUHVVLRQ�
PD\�QRW�HYDOXDWH�WR�DQ\�YDOXH�LI�DQ�REMHFW�GRHV�QRW�KDYH�DQ�DSSURSULDWH�ILHOG��RU�D�VWDFN�RU�
ORFDO�YDULDEOH�GRHV�QRW�H[LVW��RU�WKH�VWDWH¶V�SURJUDP�FRXQWHU�LV�QRW�DW�WKH�ORFDWLRQ�VSHFLILHG�
LQ�WKH�H[SUHVVLRQ��7KH�UXOHV�IRU�HYDOXDWLQJ�DQ�H[SUHVVLRQ�%�LQ�VWDWH�X��JLYLQJ�D�SDUWLDO�
MXGJHPHQW�RI�WKH�IRUP��X��%��Ä�Y��DUH�JLYHQ�LQ�)LJXUH �����

(23)

BExp ::= pc�BExpPath

BExpPath ::= BExpRoot BExpFields

BExpRoot ::= VWDFN�n
| ORFDO�n
| FieldID
| H[Q

BExpFields ::= �FieldID BExpFields
| e

Figure 3-3. The language of bytecode expressions

Figure 3-2. Rules defining the transition relation

method offset,() HeapObjClass + ref()(),() dom CatchBlockOffset´

mode: THROWING pc: pc wstack: ref e:: locals: / mstack: pc� 6� /�, ,() -:: heap: + r, , , , , ,[]

ã mode: THROWING pc: pc� wstack: ref e:: locals: /� mstack: - heap: + r, , , , , ,[]

--

56

The rule for extracts the n-th element of the stack, if the program is not throwing
an exception. The rule for extracts the n-th local variable; local variables are
available whether or not the program is throwing an exception. The H[Q expression is
available only when the program is throwing an exception; the currently throwing
exception is stored on the top of the stack. The values of static fields are extracted from the
static field map. Field dereference expressions first evaluate the dereferenced expression;
if that returns a value, then it is looked up in the heap and the field of the resulting object is
extracted.

3.3.2 The Value-Point Relation
$�WUDFH�7�RI�D�SURJUDP�3�LV�D�VHTXHQFH�RI�VWDWHV��X0��«��XQ!�VXFK�WKDW�X0�LV�WKH�LQLWLDO�
SURJUDP�VWDWH�IRU�SURJUDP�3��DQG� �

/HW�H��DQG�H��EH�E\WHFRGH�H[SUHVVLRQV��'HILQH�WKH�YDOXH�SRLQW�UHODWLRQ �3�of a program P
as follows:

H���3�H��LII

$�D�WUDFH�7�RI�3�DQG�VWDWHV�XL�DQG�XM�LQ�7��VXFK�WKDW��XL� H�� Ä Y�DQG��XM��H���Ä�Y�IRU�

VRPH�YDOXH�Y��ZKHUH�Y�LV�QRW�HTXDO�WR�QXOO�

Informally, two bytecode expressions are related if there is a common value Y that both
expressions evaluate to. If Y is an object reference, then the two expressions are aliased.
Such a Y is called a witness value.

Null values are not permitted as witnesses because aliasing is only induced when the two
expressions refer to actual objects.

(24)

(25)

(26)

(27)

(28)

Figure 3-4. Rules defining the evaluation of bytecode expressions

mode: RUNNING pc: pc wstack: Y0 ... Yn 6:: :: :: r, , ,[] SF�VWDFN�Q(,) YnÄ

--

 / Q() Y=
mode: PRGH pc: pc locals: / r, , ,[] SF�ORFDO�Q,() YÄ

mode: THROWING pc: pc wstack: Y e:: r, , ,[] SF�H[Q(,) YÄ

--

* staticField() Y=
mode: PRGH pc: pc globals: * r, , ,[] SF�staticField,() YÄ

--

mode: PRGH pc: pc heap: + r, , ,[] SF�exp,() XÄ

HeapObjFields + X()() field() Y=

mode: PRGH pc: pc heap: + r, , ,[] SF�exp�field,() YÄ

VWDFN�Q
ORFDO�Q

0 L Q�< . XL 1– XLã"

57

3.4 Generalizing Alias Analysis Using Tagging

3.4.1 Overview
The VPR as defined above does not only relate expressions yielding object references. It
can also relate expressions yielding scalar values (integers, in MJBC). However,
computing a sound approximation to the definition above would require analysis of arith-
metic, which is difficult to do efficiently. The definition would also not be very useful,
because most pairs of expressions take on overlapping ranges of values (including, e.g.,
zero).

A more useful definition distinguishes expressions having the same value by an accident of
arithmetic from expressions yielding values copied from some common source. Concep-
tually, scalar values can be treated as “boxed” and alias analysis performed on the box
objects. This enables tracking of the propagation and use of scalar values as well as objects.

Formally, we construct an “instrumented” semantics for MJBC associating labels with
values. The labels, called tags, are similar to object references. When a scalar value is
“created” by using a constant or performing arithmetic, a fresh tag is generated and
associated with the value to form a tagged value. Two tagged values may have the same
actual value but different tags. For example, two expressions may both evaluate to tagged
values of zero, but with different tags, indicating that the values were not obtained from a
common source.

Tags on non-null object references are superfluous, because two equal object references
must have the same tag; the MJBC semantics never reuse a heap location once it has been
allocated. However, all values are tagged for the sake of uniformity.

3.4.2 Tagged State
Tags are drawn from an infinite uninterpreted set, Tag.

Tagged values are defined as

• Value = Value � Tag

The following projection function is useful:

• Val(value, tag) = value

The following derived types follow immediately:

• HeapObj = ClassIdentifier � �FieldIdentifier�V�Value�

• StackFrame� �CodeLoc���9DOXH�OLVW����=�V�Value�

A tagged program state is a record of the form

>mode��PRGH��pc��SF��wstack��6, locals: /, mstack: -, heap: +, globals: *, used: used]

where

• mode : { RUNNING, THROWING }

• pc : CodeLoc

58

• 6���9DOXH�OLVW

• /���=�V�Value

• - : StackFrame list

• + : ObjectReference V HeapObj

• * : FieldIdentifier V Value

• used : 3(Tag)
This part of the state records all the tags that have been allocated so far in the execution.
This is used to help generate unique fresh tags. This set is always finite.

I define the projection functions Mode, PC, WStack, Locals, Globals, MStack, Heap and
Used to return the corresponding component of a tagged state.

The initial tagged state is

>mode��RUNNING��pc��(Main, 0)��wstack��e, locals: [], mstack: e, heap: [],
globals: InitStaticFields, used: range InitialTags]

where InitialTags is any bijection from the domain of InitStaticFields (the static fields used
by the program) to some subset of Tag. InitStaticFields is defined to have the same domain
as InitStaticFields, and

InitStaticFields(f) = (InitStaticFields(f), InitialTag(f))

In other words, in the initial state, every global variable is initialized to zero or null, each
with a unique tag.

3.4.3 Tagged Transition Rules
The inference rules defining the tagged transition relation are given in Figure 3-5.

These rules are almost identical to the untagged transition rules. There are two sets of
differences. Whenever a new value is created (by DFRQVWBQXOO, ELSXVK, LDGG, QHZ,
LQVWDQFHRI, or a runtime exception throw), a fresh tag t is chosen nondeterministically
and associated with the new value. Also, whenever the actual value of a tagged value is
required, a Val projection is inserted.

3.4.4 Correspondence Between Tagged Semantics and Untagged
Semantics
Define the function Untag from tagged states to untagged states as follows:

8QWDJ�>mode��PRGH��pc��SF��wstack��6, locals: /, mstack: -, heap: +, globals: *, used: used])
= >mode��PRGH��pc��SF��wstack��8QWDJ6�6), locals: UntagL(/), mstack:
UntagJ(-),

heap: UntagH(+), globals: UntagG(*)]

In other words, Untag just strips off all the tags from the state.

It is also useful to define Untagr(r) to untag partial records r.

59

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Figure 3-5. Rules defining the tagged transition relation

Instruction pc() DFRQVWBQXOO=

W used´

pc: pc wstack: 6 used: used r, , ,[]

ã pc: pc 1+ wstack: null W,() 6 :: used: used W{ } r, , ,[]

Instruction pc() ELSXVK byte=

W used´

pc: pc wstack: 6 used: used r, , ,[]

ã pc: pc 1+ wstack: byte W,() 6 :: used: used W{ } r, , ,[]

--

Instruction pc() LDGG=

W used´

pc: pc wstack: v1 v2 6 :: :: used: used r, , ,[]

ã pc: pc 1+ wstack: Val v1() Val v2()+ W,() 6 :: used: used W{ } r, , ,[]

--

Instruction pc() ORDG index=

pc: pc wstack: 6 locals: / r, , ,[] pc: pc 1+ wstack: / index() 6 :: locals: / r, , ,[]ã

Instruction pc() VWRUH index=

pc: pc wstack: Y 6 :: locals: / r, , ,[] pc: pc 1+ wstack: 6 locals: / index Y�[] r, , ,[]ã
--

Instruction pc() LIBFPSHT offset=

Val Y() 0�

pc: pc wstack: v 6 :: r, ,[] pc: pc 1+ wstack: 6 r, ,[]ã
--

Instruction pc() LIBFPSHT offset=

Val Y() 0=

pc: pc wstack: v 6 :: r, ,[] pc: pc offset+ wstack: 6 r, ,[]ã
--

Instruction pc() JRWR offset=

pc: pc r,[] pc: pc offset+ r,[]ã

60

(37)

(38)

(39)

(40)

(41)

(42)

Figure 3-5. Rules defining the tagged transition relation

Instruction pc() UHWXUQ=

pc: pc wstack: Y 6 :: locals: / mstack: pc� 6 � / �, ,() - :: r, , , ,[]

ã pc: pc� 1+ wstack: Y 6 �:: locals: / � mstack: - r, , , ,[]

--

Instruction pc() QHZ classID=

r dom + ´

dom ILHOGV dom WDJV dom InitFields classID()= =
I dom ILHOGV³ . " ILHOGV f() InitFields classID() I() WDJV I(),()=

+ � + r classID ILHOGV,()�[]=

W{ } range WDJV() XVHG¬ «=

W range WDJV´

WDJV is a bijection

pc: pc wstack: 6 heap: + used: used r, , , ,[]

ã pc: pc 1+ wstack: r W,() 6 :: heap: + � used: used W{ } range WDJV r, , , ,[]

--

Instruction pc() JHWILHOG fieldID=

pc: pc wstack: UHI 6 :: heap: + r, , ,[]

ã pc: pc 1+ wstack: HeapObjFields + Val UHI()()() fieldID() 6 :: heap: + r, , ,[]

--

Instruction pc() SXWILHOG fieldID=

classID HeapObjClass + Val UHI()()()=

fields HeapObjFields + Val UHI()()()=

ILHOG,' dom InitFields classID()³

pc: pc wstack: Y UHI 6 :: :: heap: + r, , ,[]

ã pc: pc 1+ wstack: 6 heap: + Val UHI() classID fields fieldID Y�[],()�[] r, , ,[]

Instruction pc() JHWVWDWLF fieldID=

pc: pc wstack: 6 globals: * r, , ,[] pc: pc 1+ wstack: * fieldID() 6 :: globals: * r, , ,[]ã
--

Instruction pc() SXWVWDWLF fieldID=

ILHOG,' dom * ³

pc: pc wstack: Y 6 :: globals: * r, , ,[]

ã pc: pc 1+ wstack: 6 globals: * fieldID Y�[] r, , ,[]

61

(43)

(44)

(45)

(46)

(47)

(48)

Figure 3-5. Rules defining the tagged transition relation

Instruction pc() LQYRNHYLUWXDO methodID=

pc� Dispatch HeapObjClass + Val Y0()()() methodID,() 0,()=

pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - heap: + r, , , , ,[]

ã pc: pc� wstack: e locals: [0 Y� 0, 1 Y� 1] mstack: pc 6 / , ,() - :: heap: + r, , , , ,[]

Instruction pc() LQYRNHVWDWLF methodImpl=

pc� methodImpl 0,()=

pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - r, , , ,[]

ã pc: pc� wstack: e locals: [0 Y� 0, 1 Y� 1] mstack: pc 6 / , ,() - :: r, , , ,[]

--

Instruction pc() FKHFNFDVW classID=

Val ref() null= HeapObjClass + Val UHI()()() SubclassesOf classID()³¿

pc: pc wstack: ref 6 :: heap: + r, , ,[] pc: pc 1+ wstack: UHI 6 :: heap: + r, , ,[]ã
--

Instruction pc() LQVWDQFHRI classID=

HeapObjClass + Val ref()()() SubclassesOf classID()³

W used´

pc: pc wstack: ref 6 :: heap: + used r, , , ,[]

ã pc: pc 1+ wstack: 1 W,() 6 :: heap: + used W{ } r, , , ,[]

--

Instruction pc() LQVWDQFHRI classID=

Val ref() null= HeapObjClass + Val ref()()() SubclassesOf classID()´¿

W used´

pc: pc wstack: ref 6 :: heap: + used r, , , ,[]

ã pc: pc 1+ wstack: 0 W,() 6 :: heap: + used W{ } r, , , ,[]

Instruction pc() DWKURZ=

Val ref() null�

mode: RUNNING pc: pc wstack: ref 6 :: r, , ,[]

ã mode: THROWING pc: pc wstack: ref e:: r, , ,[]

--

62

The following two lemmas express the fact that executions in the tagged semantics mirror
executations in the untagged semantics.

Lemma 3-1.

Lemma 3-2.

The proofs are by case analysis of the hypothesized transition relation. I present one case
for the proof of each lemma to illustrate the form of the proofs.

Proof of Lemma 3-1: Suppose and consider the case in which the transition is
justified by the LDGG rule. From the LDGG tagged transition rule,

Then

(49)

(50)

(51)

Figure 3-5. Rules defining the tagged transition relation

classID ErrorClassIDs³

r dom + ´

dom ILHOGV dom WDJV dom InitFields classID()= =

I dom ILHOGV³ . " ILHOGV f() InitFields classID() I() WDJV I(),()=

+ � + r classID ILHOGV,()�[]=

W{ } range WDJV() XVHG¬ «=

W range WDJV´

WDJV is a bijection

mode: RUNNING pc: pc wstack: 6 heap: + used r, , , , ,[]

ã mode: THROWING pc: pc wstack: r W,() e:: heap: + � used W{ } r, , , , ,[]

--

handler CatchBlockOffset method offset,() HeapObjClass + Val ref()()(),()=

mode: THROWING pc: method offset,() wstack: ref e:: heap: + r, , , ,[]

ã mode: RUNNING pc: method handler,() wstack: ref e:: heap: + r, , , ,[]

--

method offset,() HeapObjClass + Val ref()()(),() dom CatchBlockOffset´

mode: THROWING pc: pc wstack: ref e:: locals: / mstack: pc� 6 � / �, ,() - :: heap: + r, , , , , ,[]

ã mode: THROWING pc: pc� wstack: ref e:: locals: / � mstack: - heap: + r, , , , , ,[]

--

X 1 X 2, . X 1 X 2ã Untag X 1() Untag X 2()ãÃ"

X 1 X2, . Untag X 1() X2ã X 2. Untag X 2() X2= X 1 X 2ã ¾$()Ã"

X 1 X 2ã

X 1 pc: pc wstack: v1 v2 6 :: :: used: used r, , ,[]=
X 2 pc: pc 1+ wstack: Val v1() Val v2()+ W,() 6 :: used: used W{ } r, , ,[]=
Instruction pc() LDGG=

Untag X 1() pc: pc wstack: Val v1() Val v2() Untag6 6 ():: :: Untagr r(), ,[]=
Untag X 2() pc: pc 1+ wstack: Val v1() Val v2()+ Untag6 6 ():: Untagr r(), ,[]=

63

Hence as required.

Proof of Lemma 3-2: Suppose and consider the LDGG case.

By the definition of Untag, must be of the form

where

Now let t be any tag such that . Such a tag always exists because the set of tags is
infinite and the used set is always finite. Set

Then and , as required.

3.4.5 Correspondence of Traces
Define UntagT over traces as follows:

8QWDJ7��X0��«��XQ!�� ��8QWDJ�X0)��«��8QWDJ�XQ)!�

Lemma 3-3. For any tagged trace 7, UntagT(7) is a trace. Furthermore, for any trace 7,
there is a tagged trace 7 such that UntagT(7) = 7.

Proof: The proofs are by induction on the length of the traces.

Consider a tagged trace 7� �<X0, …, XQ>. For Q = 1, UntagT(7) = <Untag(X0)>. From the
definition of the initial state X0, it follows that Untag(X0) is the inital state for the untagged
semantics, hence <Untag(X0)> is a trace.

For Q > 1, by the induction hypothesis <Untag(X0), …, Untag(XQ��)> is a trace. It is required
to prove that . This follows immediately from and
Lemma 3-1.

Now consider an untagged trace 7� �<X0, …, XQ>. For Q = 1, set 7� �<X0> to be the initial
state for the tagged semantics. As above, UntagT(7) = <X0> = 7.

For Q > 1, by the induction hypothesis there exists a tagged trace 7¶ = <X0, …, XQ-1> such
that <Untag(X0), …, Untag(XQ��)> = <X0, …, XQ-1>. Substituting
and into Lemma 3-2, one obtains .
Setting 7 = <X0, …, XQ> then gives the required result.

Untag X 1() Untag X 2()ã

Untag X 1() X2ã

Untag X 1() pc: pc wstack: v1 v2 6:: :: r, ,[]=
X2 pc: pc 1+ wstack: v1 v2+() 6:: r, ,[]=
Instruction pc() LDGG=

X 1

X 1 pc: pc wstack: u1 u2 6 :: :: used: used r�, , ,[]=

Val u1() v1=
Val u2() v2=
Untag6 6 () 6=
Untagr r�() r=

W used´

X 2 pc: pc 1+ wstack: Val u1() Val u2()+ W,() 6 :: used: used W{ } r�, , ,[]=

Untag X 2() X2= X 1 X 2ã

Untag X Q 1–() Untag X Q()ã X Q 1– X Qã

Untag X Q 1–() XQ 1–=
XQ 1– XQã X Q. Untag X Q() XQ= X Q 1– X Qã ¾$

64

3.4.6 Defining the VPR Using Tags
Figure 3-6 defines evaluation of bytecode expressions in tagged states.�7KH�UXOHV�DUH�
DQDORJRXV�WR�WKH�UXOHV�IRU�XQWDJJHG�VWDWHV��7KH�RQO\�VLJQLILFDQW�GLIIHUHQFH�LV�WKDW�LQ�
Figure 3-6��LQ�WKH�UXOH�IRU�ILHOG�GHUHIHUHQFHV��WKH�REMHFW�H[SUHVVLRQ�LV�HYDOXDWHG�WR�\LHOG�WKH�
WDJJHG�YDOXH��X��W���ZKHUH�X�LV�WKH�DFWXDO�REMHFW�UHIHUHQFH�DQG�W�LV�WKH�WDJ��DQG�WKH�WDJ�LV�
LJQRUHG�

$�WDJJHG�WUDFH�7�RI�D�SURJUDP�3�LV�D�VHTXHQFH�RI�WDJJHG�VWDWHV��X0��«��XQ!�VXFK�WKDW�X0�
LV�WKH�LQLWLDO�SURJUDP�VWDWH�IRU�SURJUDP�3��DQG� �

/HW�H��DQG�H��EH�E\WHFRGH�H[SUHVVLRQV��'HILQH�WKH�YDOXH�SRLQW�UHODWLRQ �3�of a program P
as follows:

H���3�H��LII

$�D�WDJJHG�WUDFH�7�RI�3�DQG�WDJJHG�VWDWHV�XL�DQG�XM�LQ�7��VXFK�WKDW��XL� H�� Ä �X��W��DQG

�XM��H���Ä��X��W��IRU�VRPH�WDJJHG�YDOXH��X��W���ZKHUH�X�LV�QRW�HTXDO�WR�QXOO�

This is the definition actually used in the remainder of the thesis, including the rest of this
chapter.

3.5 Examples of Using the Value-Point Relation
This section presents some examples of extracting useful information from the VPR.

3.5.1 Finding Writers to a Field
&RQVLGHU�WKH�IROORZLQJ�SUREOHP�

³*LYHQ�D�SURJUDP�3�DQG�WKH�SF�RI�D�JHWILHOG�LQVWUXFWLRQ��ILQG�DOO�FRGH�ORFDWLRQV�SF��RI�
WKH�SXWILHOG�LQVWUXFWLRQV�WKDW�SXW�YDOXHV�LQWR�WKH�ILHOG�EHLQJ�UHDG�´

(52)

(53)

(54)

(55)

(56)

Figure 3-6. Rules defining the evaluation of bytecode expressions in tagged states

mode: RUNNING pc: pc wstack: Y0 ... Yn 6 :: :: :: r, , ,[] SF�VWDFN�Q(,) YnÄ

--

 / Q() Y=
mode: PRGH pc: pc locals: / r, , ,[] SF�ORFDO�Q,() YÄ

mode: THROWING pc: pc wstack: Y e:: r, , ,[] SF�H[Q(,) YÄ

--

* staticField() Y=
mode: PRGH pc: pc globals: * r, , ,[] SF�staticField,() YÄ

--

mode: PRGH pc: pc heap: + r, , ,[] SF�exp,() X W,()Ä

HeapObjFields + X()() field() Y=

mode: PRGH pc: pc heap: + r, , ,[] SF�exp�field,() YÄ

0 L Q�< . X L 1– X Lã "

65

7KLV�TXHVWLRQ�FDQ�EH�IRUPDOL]HG�DV�WKH�IROORZLQJ�VHW�FRPSUHKHQVLRQ�

^�SF��_�$�D�WUDFH�7�RI�3� ��X���«��XQ!�

$S��T��REMUHI, 6,�YDO, 6�,�ILHOG, r��Val(REMUHI)���QXOO ¾
XS� �>pc��pc��wstack: REMUHI����6, r]�¾ InstructionP(SF�� �JHWILHOG�ILHOG�¾
XT� �>pc��pc���wstack: YDO����REMUHI����6�, r]�¾ InstructionP(SF��� �SXWILHOG�ILHOG�`

This set is equal to

^�SF��_�$ILHOG��SF�VWDFN����3�SF��VWDFN���¾

,QVWUXFWLRQP�SF�� �JHWILHOG�ILHOG�¾�,QVWUXFWLRQP�SF��� �SXWILHOG�ILHOG�`

The translation erases all mention of dynamic properties, summarizing them with the static
VPR.

3.5.2 Downcast Checking
Consider the following problem:

³)LQG�DOO�SURJUDP�ORFDWLRQV�SF�FRUUHVSRQGLQJ�WR�FKHFNFDVW�LQVWUXFWLRQV�ZKLFK�PLJKW�
IDLO�´

This can be formulated as

^�SF�_�$�D�WUDFH�7�RI�3� ��X���«��XQ!��$S��REMUHI, 6,�+,�FODVV, r��Val(REMUHI)���QXOO�¾
XS� �>pc��pc��wstack: REMUHI����6, heap: +, r]�¾
InstructionP(SF�� �FKHFNFDVW�FODVV�¾
+HDS2EM&ODVV�+(Val(REMUHI)���´�6XEFODVVHV2I�FODVV��`

This can be rewritten to use the value-point relation:

^�SF�_�$SF�, class, class�.
SF�VWDFN����3�SF��VWDFN���¾

,QVWUXFWLRQ3�SF�� �FKHFNFDVW�FODVV�¾

,QVWUXFWLRQ3�SF�±��� �QHZ�FODVV��¾

FODVV��´�6XEFODVVHV2I�FODVV��`

In this example, the translation is exact; a downcast is safe if and only if some instruction
creates an object which reaches the downcast instruction and which is incompatible with
the required bound. Thus, if the true value-point relation is known, the unsafe downcasts
can be determined precisely. Of course, in general an analysis can only compute an approx-
imation to the true relation.

3.6 Properties of the Value-Point Relation
7KH�935�LV�V\PPHWULF��,W�LV�QRW�UHIOH[LYH��EHFDXVH�H[SUHVVLRQV�LQ�GHDG�FRGH�FDQQRW�EH�
UHODWHG�WR�DQ\WKLQJ��,W�LV�QRW�WUDQVLWLYH�HLWKHU��LQ�JHQHUDO��7R�VHH�WKLV��VXSSRVH�%���3�%��DQG�
%� �3 %���7KH�GHILQLWLRQ�RI�WKH�935�LPSOLHV�WKDW�IRU�VRPH�FKRLFH�RI�YDULDEOHV��
�XL� %�� Ä Y���XM��%���Ä�Y, �XN� %���Ä�X��DQG��XO��%���Ä�X. The important fact is that it is
possible for Y to not equal X (when XM�� XN�, so there is no way in general to justify a
relationship between %��DQG�%���)RU�H[DPSOH��FRQVLGHU�WKLV�IUDJPHQW�RI�FRGH�

66

LI��E��^�[� �\��`�HOVH�^�[� �]��`

Let %� be \, %� be [and %� be], all evaluated after this statement. Then this code may
execute once with E true, inducing %���3�%�, and then execute again with E false, inducing�
%� �3 %�, but \ need never equal].

The VPR does not explicitly encode any information about data dependence or the
direction of data flow. %���3�%��PHDQV�WKDW�%��DQG�%��FDQ�JHW�WKH�VDPH�YDOXH��EXW�QRWKLQJ�
LV�UHYHDOHG�DERXW�ZKHWKHU�WKH�YDOXH�DSSHDUV�DW�%��RU�%��ILUVW��,Q�IDFW��LW�PD\�EH�WKDW�QR�GHI�
XVH�FKDLQ�OHDGV�IURP�%��WR�%��RU�YLFH�YHUVD�²�WKH\�PD\�ERWK�EH�DW�WKH�HQG�RI�GHI�XVH�FKDLQV�
OHDGLQJ�EDFN�WR�D�FRPPRQ�VRXUFH��+RZHYHU��LW�LV�SRVVLEOH�WR�PDNH�LQIHUHQFHV�DERXW�GDWD�
GHSHQGHQFH�LQ�DQ�LPSRUWDQW�FRPPRQ�FDVH��ZKHQ�RQH�RI�WKH�%V�FRUUHVSRQGV�WR�WKH�UHVXOW�RI�
D�YDOXH�FUHDWLRQ�RSHUDWLRQ��VXFK�DV�WKH�UHVXOW�RI�D�QHZ�LQVWUXFWLRQ��,Q�WKLV�FDVH�LW�LV�FOHDU�WKDW�
WKH�YDOXH�RULJLQDWHG�DW�WKH�FUHDWLRQ�RSHUDWLRQ��7KLV�VHHPV�WR�EH�VXIILFLHQW�IRU�PDQ\�DSSOL�
FDWLRQV��'HILQLQJ�D�UHODWLRQ�UHSUHVHQWLQJ�WUXH�GLUHFWLRQDO�GDWD�GHSHQGHQFH�ZRXOG�UHTXLUH�D�
PXFK�PRUH�FRPSOLFDWHG�GHILQLWLRQ�WKDQ�IRU�WKH�935�

The VPR has limited context information. For example, if %���3�%� and the bytecode
expressions are both located in the same method, there is no way to determine whether the
two states justifying the relationship actually occur during the same call to the method or
during different calls to the method. For some applications, such as alias analysis for code
motion, the tool is only interested in finding aliases that appear during the same call to a
method, or even during the same iteration of a loop. Thus, these applications suffer a loss
of accuracy using the VPR.

The VPR is simple and does not encode information about context, or scalar values, or
control dependence, or many other aspects of program behavior that can be captured by
static analysis. However, all these aspects can be used to improve the accuracy of an imple-
mentation of a VPR analysis. For example, although the VPR itself encodes only limited
context information, SEMI uses context sensitive analysis to produce a better VPR approx-
imation.

The VPR is undecidable. In general, an analyzer can only compute a conservative approx-
imation to the VPR. As stated above, a conservative approximation is simply any relation
whose pairs are a superset of the pairs of the true relation. ,Q�WKLV�WKHVLV��,�ZULWH��DQ�DSSUR[�
LPDWLRQ�UHODWLRQ�IRU�SURJUDP�3�DV��3.

3.7 Extensions
Many tools would benefit from the ability to specify tighter context constraints, such as the
MayEqual formulation of Boyland and Greenhouse [12]. This is an obvious candidate for
future work.

Other tools require slightly different semantics for the value-point relation. For example,
for some applications it is useful to consider values to be related if they are ever compared.
This could be added to the dynamic semantics by having comparisons unify the tags of the
operands. Static analyses would then have to be adjusted to compute the correct relation-
ships. Ajax has been adapted to this task, but that work is beyond the scope of this thesis.
Other applications require the computed VPR approximation to satisfy certain structural

67

invariants, so that the tool can perform its own processing efficiently. An example of this
is the object modelling tool in Chapter 11.

The trace T in the definition of the VPR is required to range over all possible executions of
the program, which implies that any truly conservative approximation to the VPR will be a
static analysis. However, if that requirement is relaxed so that T only ranges over some
given finite set of executions (e.g. some actual runs of the program that were recorded),
then the VPR can be computed by dynamic analysis. The “dynamic VPR” can be used by
the same set of tools as the static version, except that the results of the tools must be inter-
preted more carefully; they are true only for the executions recorded.

68

69

4 Efficient Queries over the
Value-Point Relation

4.1 Introduction
In the previous chapter, I defined the value-point relation as an abstraction of a program,
generated by some analysis and consumed by some tool. That discussion focused on the
mathematical properties of the relation. In practice, the analysis cannot simply compute an
explicit relation and pass it to the tool, because the relation is infinite. Instead, the tool must
pass certain parameters to the analysis indicating which parts of the relation must be
computed. In fact, for efficiency, some of the tool’s computations over the relation often
need to performed by the analysis on the tool’s behalf, in order to exploit analyis-specific
structure. These computations are also expressed as parameters to the analysis.

The nature of this parameterization determines which analysis and tool combinations will
be efficient in practice. In this chapter, I describe the parameters supported by Ajax and
their motivation. I also describe some general strategies used by analyses and tools to
exploit the parameters.

4.2 Analysis Parameters
The following sections explain the issues that need to be addressed by the parameterization
scheme, and how each issue is addressed in Ajax. Section 4.2.5 summarizes the parameters.

4.2.1 Restricting the Domain of the Value-Point Relation
Any realistic program admits an infinite number of different bytecode expressions. For
example, for any n one can form a meaningful expression involving a sequence of n field
dereferences. The value-point relation is defined over all pairs of bytecode expressions —
not just those that appear in the program — and therefore the relation is infinite. In practice,
however, tools generally only consider a finite number of bytecode expressions.

Therefore, the simplest and most important parameter is a restriction on the domain of the
relation. A tool restricts the domain by explicitly specifying two sets of bytecode expres-
sions, sources S and targets T. The analysis computes the value-point relation projected
onto S � T. Because the sets are given explicitly, they must be finite.

Section 3.5.1 showed how a tool could use the VPR to find all writers to a field. That tool
would set

S = { SF�VWDFN���}
T = { SF��VWDFN���_�,QVWUXFWLRQP�SF��� �SXWILHOG�ILHOG }

70

The example in Section 3.5.2 determines whether a field is always empty. It uses

S = { SF�VWDFN���field�}
T = { SF��VWDFN���_�,QVWUXFWLRQ3�SF�±��� �QHZ�FODVV�¿

,QVWUXFWLRQ3�SF�±��� �LQVWDQFHRI�FODVV�¿

,QVWUXFWLRQ3�SF�±��� �LDGG�¿

�,QVWUXFWLRQ3�SF�±��� �ELSXVK�Q�¾�Q������}

The downcast checking example in Section 3.5.2 would set

S = { SF�VWDFN���_�,QVWUXFWLRQP�SF±��� �QHZ�FODVV }
T = { SF��VWDFN���_�,QVWUXFWLRQ3�SF��� �FKHFNFDVW�FODVV�}

Since the value-point relation is symmetric, the source and target sets are interchangeable
at this point in the exposition. The extensions described below break this symmetry.

4.2.2 Avoiding Explicit Products
The downcast checking example shows that, for some applications, both the S and T sets
are likely to be proportional in size to the size of the program. If the analysis generates an
explicit projection of the relation into S � T, the size of the result could grow quadratically
in the size of the program — especially if the analysis is not very precise.

However, many tools postprocess the projected relation to compute some final result that
is much smaller than the relation itself. For example, the downcast checker computes just
one bit of information per element of T — whether or not the downcast is safe. Furthermore
any scalable analysis must be able to represent its internal data in space subquadratic in the
size of the program. For efficiency, Ajax maps the tool’s computation directly onto the
internal data structures of the analysis, without requiring an explicit representation of the
VPR approximation. Of course this must be done with only minimal assumptions about the
form of that structure.

To this end, I adapted and generalized an idea from Heintze and McAllester’s work on
subtransitive control flow analysis [41]. The idea is to suppose that the implementation of
the analysis builds a directed graph G with the following properties:

• There is a map GS from S to the nodes of G.

• There is a map GT from T to the nodes of G.

• The analysis indicates s �3 W if and only if there is path from GS(s) to GT(t) in G.

In Chapter 5 and Section 6.6 I explain how such a graph is constructed by RTA and SEMI
respectively.

Many tools can exploit this graph structure. Suppose a tool needs to compute:

where F is some function specific to the tool. Then if F satisfies a certain lattice-like
condition described below, the set of results can be computed by exploiting the graph.
Conceptually, each node corresponding to a source s is first associated with an initial value
F[{ s }]. These values are then propagated along the graph edges and merged when they

W) V 6³ V W�P|{ }[],() W 7³|{ }

71

meet at nodes. The result for each target t is read from the final value associated with the
node corresponding to t. This process is similar in flavor to dataflow analysis.

For example, consider the downcast checking tool. Let the function F be defined as:

F[{ SF1�VWDFN����SF2�VWDFN���������SFn�VWDFN�� }]
= the most specific common superclass of the classes instantiated at
SF1±���SF2±��������SFn±1

Consider the code in Figure 4-1. A simple dataflow analysis would produce the graph in
Figure 4-2.

The downcast checking system finds three QHZ instructions in the program, corresponding
to s1, s2, and s3, and three FKHFNFDVW instructions, corresponding to t1, t2, and t3, as
shown. For each node N in the graph, it computes F applied to the set of the si that reach N.

VWDWLF�YRLG�PDLQ���^
����2EMHFW�D� �QHZ�,QWHJHU���
����2EMHFW�E� �QHZ�6WULQJ��+HOOR���
����2EMHFW�F� �QHZ�6WULQJ��.LWW\���
����2EMHFW�G�
����LI�������^�G� �D��`�HOVH�^�G� �E��`
����2EMHFW�H�
����LI�������^�H� �E��`�HOVH�^�H� �F��`
����2EMHFW�I�
����LI�������^�I� �G��`�HOVH�^�I� �H��`
����2EMHFW�K� �D�
����2EMHFW�L� �H�
�����,QWHJHU�K�
�����,QWHJHU�I�
�����6WULQJ�L�
`

Figure 4-1. Example of Java code exhibiting aliasing

Figure 4-2. Example of an analysis graph used by the downcast checking tool

6WULQJ

s1 (QHZ�,QWHJHU)

2EMHFW

2EMHFW

,QWHJHU

s2 (QHZ�6WULQJ)

6WULQJ

6WULQJ

s3 (QHZ�6WULQJ)

,QWHJHU

6WULQJ
t1 (FKHFNFDVW�,QWHJHU)

t2 (FKHFNFDVW�,QWHJHU)
t2 (FKHFNFDVW�6WULQJ)

72

This can be done efficiently because the value of F at each node (other than a source node)
can be computed from the F of its predecessors in the graph — it is the most specific
common superclass of the classes at the predecessors. The computed F values are under-
lined.

Once the downcast checker has determined the most specific common superclass of the
classes of the objects that may reach a given downcast instruction, it compares that super-
class with the bound specified in the FKHFNFDVW instruction. If the actual superclass is a
subclass of the bound (or equal to it) then the cast cannot fail. If the actual superclass is not
a subclass of the bound, then the analysis has identified at least one class whose objects
appear to reach the downcast instruction but which is not compatible with the bound. For
more details, see Chapter 10.

This approach improves efficiency because the space required is only linear in the size of
the analysis’ graph, instead of proportional to the product of the size of S and the size of T.

It is tempting to assign semantics to the graphs. For example, it seems natural to interpret
Figure 4-2 as a dataflow graph, in which objects of various classes flow from their creation
sites to the sites of the downcast instructions, and the nodes represent intermediate sites in
def-use chains. This interpretation may be correct for some analyses, but it would be
mistaken in general. Without referring to a specific analysis, all one can say about the
graphs is that they are encodings of the computed VPR approximation, as defined above —
“s �3 W if and only if there is path from GS(s) to GT(t) in G”.

4.2.3 General Framework
The lattice-like property required of F is quite simple. There must exist a binary function
DM such that, for any two sets of source bytecode expressions P and Q,

The existence of this merge operator ensures that the result of F can be constructed incre-
mentally.

Rather than passing graph structures from analyses to tools across the Ajax interface, Ajax
tools pass their F functions to the analyses. This reduces the burden on tool implementors.

A tool reveals its F function to analyses by passing in the following parameters:

• The type D of intermediate data — F’s result type

• The merge operator DM : D � D � D

• The identity DE = F[{}]

• The initial assignment DI : S � D, such that DI(s) = F[{ s }]

These parameters fully determine F, for F can be computed as follows:

The correctness of this computation follows from the lattice-like property of F, by induction
over the size of F’s argument set.

F 3 4[] DM F 3[] F 4[],()=

F { }[] DE=
F V{ } 4[] DM DI V() F 4[],()=

73

The lattice-like property imposes several conditions on these parameters. In the proofs
below I assume that F is surjective, i.e., that for every element d of D there is a set P such
that F[P] = d. This is ensured by an appropriate choice of D.

• DM must be commutative:

• DM must be associative:

• DM must be idempotent:

• DE must be an identity for DM:

In practice, it has not been difficult to identify the appropriate F function and D parameters
for each tool. In fact, a small set of F functions has proved to be sufficient for a variety of
tools. Many tools use the same F function and distinguish themselves by varying the S and
T sets. Some examples are shown below in Section 4.3.

4.2.4 Tool Target Data
Sections 4.2.2 and 4.2.3 describe how analyses compute F-values for each expression in the
target set T. However, the expressions T themselves are generally of no interest to a tool.
For example, the downcast checker is only interested in the location of the downcast
instruction. Therefore each tool specifies a map TR associating tool target data with each
target expression. The analysis computes

To compute a result for a given tool target datum, the analysis merges the results for all
target expressions associated with the datum.

In the absence of tool target data, most tools would need to maintain their own maps from
target expressions to data they find meaningful. The tool target data mechanism factors out
this code into a shared module. Target data are also useful when a tool associates the same
datum with more than one expression, because merging is automatically performed. The
Ajax live code detector exploits this feature, as explained in Section 4.3.5 below.

4.2.5 Summary of Analysis Parameters
This is the final list of parameters:

• A finite set S of source expressions

• A finite set T of target expressions

• A function F described by four parameters:

DM F 3[] F 4[],() F 3 4[] F 4 3[] DM F 4[] F 3[],()= = =

DM F 3[] DM F 4[] F 5[],(),() F 3 4 5()[] F 3 4() 5[]
DM DM F 3[] F 4[],() F 5[],()

= =
=

DM F 3[] F 3[],() F 3 3[] F 3[]= =

F 4[] F {} 4[] DM F {}[] F 4[],() DM DE F 4[],()= = =

G F V S³ W T³ .V W�P TR W() G=¾$|{ }[],() G range TR³|{ }

74

• A type D of intermediate data

• A merge operator DM : D � D � D satisfying the conditions of Section 4.2.3

• An identity DE satisfying the conditions of Section 4.2.3

• An initial assignment DI : S � D

• A type R of target data

• A tool target data map TR : T � R

The analysis defines

The analysis then computes the result of the query:

4.3 Examples

4.3.1 Finding Writers to a Field
Section 3.5.1 presents an example VPR query to find which instructions write values into
a field. This query only needs to determine which target expressions are related to a given
single source expression. The output of the tool is a list of the locations of those expres-
sions.

The query parameters are simple. The function F returns true if the input set is non-empty
(i.e., contains the source expression) and false otherwise.

S = { SF�VWDFN���}
T = { SF��VWDFN���_�,QVWUXFWLRQP�SF��� �SXWILHOG�ILHOG }
D = { true, false }
DM(a, b) = a ¿ b
DE = false
DI(SF�VWDFN��) = true
R = CodeLoc
TR(SF¶�VWDFN��) = pc’

The analysis returns “true” for the program locations whose target expressions are related
to the source expression. The tool prints out these locations.

4.3.2 Finding Unused Fields
The tool discussed in Section 3.5.2 determines whether a given JHWILHOG instruction
always returns zero or null. Consider an extension of that tool to check all JHWILHOG
instructions simultaneously. This tool needs to compute one bit of information for each
JHWILHOG instruction, so we make the JHWILHOG instructions the targets.

F { }[] DE=
F V{ } 4[] DM DI V() F 4[],()=

G F V S³ W T³ .V W�P TR W() G=¾$|{ }[],() G range TR³|{ }

75

S = { SF��VWDFN���_� ,QVWUXFWLRQ3�SF�±��� �QHZ�FODVV�¿

,QVWUXFWLRQ3�SF�±��� �LQVWDQFHRI�FODVV�¿

,QVWUXFWLRQ3�SF�±��� �LDGG�¿

�,QVWUXFWLRQ3�SF�±��� �ELSXVK�Q�¾�Q������}
T = { SF�VWDFN���ILHOG�_�,QVWUXFWLRQ3�SF�� �JHWILHOG�ILHOG�}
D = { true, false }
DM(a, b) = a ¿ b
DE = false
DI(SF��VWDFN��) = true
R = CodeLoc
TR(SF�VWDFN���ILHOG) = pc

Similarly to the previous example, the analysis returns “true” for the locations whose target
expressions are related to any of the source expressions. These are the locations of the
JHWILHOG instructions that might not return zero or null. The tool outputs the locations
for which the analysis returns “false”.

4.3.3 Downcast Checking
These are the analysis parameters for the downcast checker:

S = { SF�VWDFN���_�,QVWUXFWLRQP�SF±��� �QHZ�FODVV }
T = { SF��VWDFN���_�,QVWUXFWLRQ3�SF��� �FKHFNFDVW�FODVV�}
D is the class lattice for 3 (see below)
DM is the join operation in D
DE is the bottom element in D
DI(SF�VWDFN��) = class, where ,QVWUXFWLRQP�SF±��� �QHZ�FODVV

R = CodeLoc
TR(SF¶�VWDFN��) = pc�

The class lattice for program 3 is 3’s Java class hierarchy, including interfaces, extended
to form a lattice. The standard class hierarchy does not form a lattice for two reasons. It does
not have a “bottom” element to serve as the identity for a join operation, and therefore we
add a synthetic bottom element. Also, two classes may not have a unique most specific
common superclass, such as classes &ODVV3 and &ODVV4 in the hierarchy of Figure 4-3.

To complete the lattice, we add elements representing the intersections of sets of classes
and interfaces. In this example, the most specific common superclass of &ODVV3 and
&ODVV4 is the synthetic intersection class “&ODVV$ ¬ ,QWHUIDFH%”.

For each FKHFNFDVW instruction, the result of the analysis is the most specific common
superclass of all the classes of objects subjected to the FKHFNFDVW instruction. If this
superclass is a subclass (or equal to) the bound specified in the FKHFNFDVW instruction,
then the downcast is safe, otherwise it may fail.

76

4.3.4 Method Call Resolution
Consider a tool designed to resolve dynamic method calls through a given method signature
M. For each dynamic method call site, the tool determines whether there is exactly one
possible callee, and if so, which method it is. Dynamic method call sites with only one
possible callee can be converted into direct calls by a compiler, resulting in faster method
call code and possible inlining of the callee.

Because the tool computes information for each call site, the call sites are the targets. (In
general, whenever the tool’s query can be phrased in the form “for every X, compute Y”,
the choices for X determine the set of targets T.) At each site, the target expression is the
object reference upon which the call is dispatched. The source expressions are the results
of the QHZ instructions that create objects implementing M. By determining which of those
sources are related to the receiving object at a call site, the call can be resolved, or found to
be unresolvable.

Instead of collecting the complete list of source expressions related to each target, it is more
efficient to extract just the salient information. We associate with each source expression
the method implementing M in the new object. The tool collects the set of methods reaching
each call site.

Observe that if a set of callee methods at a call site has more than one element, then the call
cannot be statically resolved and the exact contents of the set are not used. Therefore each
set can be abstracted to one of the following values:

• The empty set, indicating that there is no receiving object. This implies that the call site
is in dead code or the receiving object reference is always null.

• A singleton method, indicating that there is at most one receiving method implementa-
tion. The call site can be resolved to the given method.

• The value “many”, indicating that the set of possible method implementations may
have more than one element. The call site cannot be resolved to a single method.

This abstraction is essentially the optimization proposed by Heintze and McAllester [41].

Let ImplementorsP(M) denote the set of all methods implementing M. The tool uses the
following parameters:

Figure 4-3. Example of non-lattice behavior due to interfaces

&ODVV$,QWHUIDFH%

2EMHFW

&ODVV3 &ODVV4

77

S = { SF�VWDFN���_�,QVWUXFWLRQP�SF±��� �QHZ�FODVV }
T = { SF¶�VWDFN���_�,QVWUXFWLRQ3�SF��� �LQYRNHYLUWXDO�0�} (VWDFN�� refers
to the receiving object in the call to M)
D = { «, many } ImplementorsP(M)

DM(«, x) = DM(x, «) = x
DM(many, x) = DM(x, many) = many
DM(x, x) = x
DM(x, y) = many, when x � y
DE = «
DI(SF�VWDFN��) = impl, where ,QVWUXFWLRQP�SF±��� �³QHZ�FODVV”, and class’s
implementation of M has identifier impl
R = CodeLoc
TR(SF��VWDFN�n) = pc’

The tool outputs a D value for each LQYRNHYLUWXDO instruction specifying method
signature 0. If the value is «, then the instruction is never reached. If the value is “many”,
then the instruction cannot be statically resolved. Otherwise the value is the name of the
only possible callee method.

Section 4.4.1 describes how this tool is extended to examine all LQYRNHYLUWXDO
instructions simultaneously.

4.3.5 Live Code Detection
Consider a tool to find the live implementations of a given method signature M. Such a
“live code detector” is rather similar to the method call resolver in the previous section,
because proper identification of which methods are live requires some resolution of
dynamic method calls. However, the live code detector collects information about methods
rather than call sites. Therefore the tool target data are the method implementations; the
result returned for each method is “true” if it may be live, or “false” if it must be dead. The
parameters are:

S = { SF��VWDFN�n�_�,QVWUXFWLRQ3�SF��� �LQYRNHYLUWXDO�0�}, where n is the index
of the receiving object in the list of parameters of a call to M
T = { SF�VWDFN���_�,QVWUXFWLRQP�SF±��� �QHZ�FODVV }
D = { true, false }
DM(a, b) = a ¿ b
DE = false
DI(SF��VWDFN�n) = true
R = CodeLoc
TR(SF�VWDFN��) = impl, where ,QVWUXFWLRQP�SF±��� �³QHZ�FODVV”, and class’s
implementation of M has identifier impl

In a sense, this query propagates “liveness” from call sites to method implementations,
whereas the method call resolver propagates method implementations to call sites.

78

This is an example of a tool which associates the same target datum with more than one
target expression. A method implementation is live if 0 is invoked on any object which
inherits that method implementation.

The analysis specified here does not detect all live methods. Calls to static methods must
be detected separately. In Java, there is also an LQYRNHVSHFLDO instruction which calls
non-static methods using static dispatch.

4.4 Additional Features of the Ajax Implementation

4.4.1 Query Families and Query Fields
The examples in Sections 4.3.4 and 4.3.5 show how to perform method call resolution or
live code detection for a specific method signature M. To perform these tasks for all method
signatures, it suffices to perform a separate query for each signature encountered in the
program. Other tools also need to make many queries varying only their S, T, DI, and TR
parameters.

For greater efficiency and convenience, Ajax allows the remaining parameters — R, D,
DM, and DE — to be treated as a unit, a query family. Each query family defines an index
type, I, so that queries belonging to each query family are indexed by elements of I. In the
examples above, the elements of I are the method signatures M. Ajax is designed to allow
a query family to easily manipulate its collection of queries through the index elements.
Each instance of an analysis can efficiently support many different query families and
many queries within each family.

4.4.2 Incrementality
Ajax is highly incremental. New code can be added to the analyzed program at any time,
in response to program modifications or environmental changes. The results of the analyses
and tools are updated to reflect the dynamic changes. This requires two elaborations of the
VPR interface presented in this chapter.

The query parameters S, T, DI, and TR cannot be explicitly stated a priori, because the sum
of “all the code that might ever be live” is ill-defined or impractically large (for example,
it includes the entire Java class library, which is very large). Therefore whenever a new
method is added to the “live program,” the Ajax system calls back into the tool, notifying
it of the existence of the new method. The tool responds by extending its S, T, DI, and TR
parameters with the expressions whose locations are in the new method. The analyses must
be capable of handling such dynamic updates to the parameters. For the Ajax analyses, this
was tricky to implement but not conceptually difficult.

Expressions in dead methods are not related to any other expressions, even themselves.
Therefore, if a tool is never notified of the existence of a method, the results for target
expressions in that method are trivially equal to DE. In practice, tools have special handling
for unreachable source or target expressions. In the “find writers to a field” example, if the
source expression specifying the field is in unreachable code, it is preferable to report that
fact to the user rather than to report that there are no writers to the field.

79

Since the results of an analysis can change when the analyzed program changes, results are
reported to a tool using a callback. When the analysis computes a new result for a tool target
datum, it reports the datum and result pair to the tool through the callback. In fact, the
analyses report results even before the analysis is complete; this results can be superceded
by subsequent callbacks. Ajax makes no guarantees of any relationship between these
“progressive results” and the final result for a target datum. However, the progressive
results can be used for advisory purposes, such as displaying progress to a user. When an
analysis completes, it signals the tool that the last reported results for each tool target datum
are sound.

4.4.3 Code Mutation
Ajax supports changes being made to the program during analysis, and even after analysis
has completed. If analysis has already completed, then the results are updated progressively
until completion is signalled again. Many tools are not persistently attached to the program
being analyzed, and terminate after the first complete results have been delivered.

The implementation of code mutation is quite simple: for each changed, live method,
another “live method” notification is sent to the analysis. It is up to each analysis to decide
how to handle multiple live method notifications for a single method. The analyses imple-
mented in Ajax generate new constraints for the new code and add them to the existing set
of constraints (i.e., old constraints are not revoked). This is simple and does not penalize
the common case in which code is not mutated.

4.4.4 Analysis Scoping
No analysis for Java can attempt to analyze all available code, because the standard
libraries are so large that performance would be unacceptable. The code to be analyzed
must be identified as part of the analysis. A natural approach is to compute a fixed point
from below: start by assuming that just one “main” method is live, analyze it, discover other
methods that may be called, add those to the set of live methods, analyze those new
methods, and so on.

Ajax’s incremental analysis makes this simple. A live code detection tool is instantiated,
just as described in Section 4.3.5. It maintains a set of methods currently thought to be live;
This set is initialized to a “main” method by the tool environment. The analysis then runs
and reports results to the live code detection tool, which adds new live methods to the live
method set. The analysis is notified of these new live methods, computes new results,
reports them to the tools, and the cycle continues. This means that typically an Ajax system
is configured with two tools: a live method detection tool to control the scope of the
analysis, and the tool that the user is actually interested in.

This approximation of the set of live methods from below is frequently seen in prior work,
for example RTA [9]. Ajax extends this work by factoring out the approximation and
applying it to any analysis.

4.4.5 Intersection
A natural extension of the framework presented above is to extend the operations on the
intermediate data D to make it a true lattice; i.e., to provide a meet operator DN corre-

80

sponding to set intersection. This requires an additional lattice-like property of the tool’s F
function:

This is useful for analyses that compute two or more different, but individually sound,
approximations to the value-point relation. The intersection of two sound approximations
to the true relation is also a sound approximation to the true relation. In other words, given
relations �1P and �2P, the relation �P defined as s �P t � s �1P t ¾ s �2P t is a sound
approximation to the truth, and potentially more accurate than either of the input relations.

Now consider implementing the Ajax interface with such an analysis, and computing the F
values for a tool:

Therefore, it suffices to compute the F values for the two relations separately and then apply
the meet operator.

It is straightforward to implement a functor that takes a set of Ajax analyses and combines
them in this way. Of course, tools must provide a suitable meet operator. The examples
above which use boolean values as their intermediate data can use the boolean “and”
operator as the meet.

The example using the Java class lattice explicitly represents the meet of two classes as an
“intersection class” of the two classes. The representation of intersection classes can often
be simplified by exploiting facts about the Java class hierarchy. For example, an inter-
section class containing two non-interface classes is empty unless one of the classes is a
(possibly indirect) superclass of the other, because multiple inheritance is only allowed for
interfaces.

Of the examples in this chapter, the method call resolution tool presents the most diffi-
culties in defining a suitable meet operator. The problem is that when both of the operands
of the meet are “many”, the precise result cannot be determined. The operator must return
“many”. This is a safe approximation, but the analysis parameters that we introduced for
efficiency are now causing us to lose information. For example, the sets { M1, M2 } and
{ M2, M3 } both map to the abstract value “many”; their intersection could be represented
with the abstract singleton { M2 }, but this cannot be computed from the abstract values
alone. In this situation, the results returned to the tool may vary from run to run depending
on the order of analysis computations, even if the underlying analyses compute the same
VPR approximations in each run.

F 3 4¬[] DN F 3[] F 4[],()=

W F V 6³ V W�P|{ }[],() W 7³|{ }

W F V 6³ V W�1P V W�2P¾|{ }[],() W 7³|{ }

W F V 6³ V W�1P|{ } V 6³ V W�2P|{ }¬[],() W 7³|{ }

W DN F V 6³ V W�1P|{ }[] F V 6³ V W�2P|{ }[],(),() W 7³|{ }

=

=

=

81

5 Implementing the Value-
Point Relation With RTA

5.1 Introduction

5.1.1 Introduction to Rapid Type Analysis
Bacon and Sweeney proposed Rapid Type Analysis [9] as a fast algorithm for resolving
dynamic method calls in statically typed object oriented programs; it was originally applied
to C++ programs. RTA uses static type information to resolve dynamic method calls as
follows: given a virtual call to method m of object reference v, find Cv, the static class of v,
and compute the set S of all subclasses of Cv, including Cv itself. Soundness of the static
type implies that these classes are a superset of the possible classes that v can have at run-
time. Therefore if every class in S implementing m uses the same implementation of m, the
call can be statically resolved to that implementation.

As described, this is also known as Class Hierarchy Analysis [32]. However, RTA adds an
important extension to improve accuracy without harming efficiency. Consider the Java
program in Figure 5-1.

CHA determines that Y has two possible implementations of P, one from 6XE� and one
from 6XE�, and therefore the call Y�P�� cannot be resolved. However, RTA observes that
the method I�� is never called and no object of class 6XE� is ever created, and therefore
Y’s only possible implemention of P is from 6XE�; the call is resolved.

In this example, RTA starts by assuming that 0DLQ�PDLQ is the only live method and that
no classes are instantiated. It examines the body of 0DLQ�PDLQ and discovers that 6XE�

DEVWUDFW�FODVV�6XSHU�^
����DEVWUDFW�YRLG�P���

VWDWLF�LQW�Q�
`
FODVV�6XE��H[WHQGV�6XSHU�^

YRLG�P���^�Q� ����`
`
FODVV�6XE��H[WHQGV�6XSHU�^

YRLG�P���^�Q� ����`
`
FODVV�0DLQ�^

YRLG�I���^�QHZ�6XE�����`
YRLG�PDLQ�6WULQJ>@�DUJV��^ 6XSHU�Y� �QHZ�6XE���� Y�P��� `

`

Figure 5-1. A simple Java program

82

is instantiated and there is a dynamic method call to 6XSHU�P. At this point 6XE� is the
only class in the set of instantiated classes, so the only possible implementor of 6XSHU�P
is 6XE��P, which is added to the live method set. Then 6XE��P is examined, which does
not add any new methods or instantiated classes. Now that all the live methods have been
examined, the algorithm terminates.

The efficacy of CHA is based on the observation that in most object oriented programs,
many overridable methods in fact have only one implementation. These include methods
in an abstract interface that has only one implementation, and methods in a class that has
no subclasses. RTA extends CHA to exploit the fact that even when there is more than one
implementation available, many programs will only use one implementation.

Both the RTA and CHA algorithms were originally tailored to the problem of resolving
dynamic method calls. In Ajax, the technique underlying RTA is generalized away from
any particular problem and used to generate VPR information in response to arbitrary
queries. For example, the Ajax implementation of RTA can be used to produce information
similar to that produced by the “type based alias analysis” of Diwan et al. [23].

By decoupling the analysis from its applications, Ajax makes differences between analyses
more apparent. For example, it becomes clear that Diwan et al.’s basic “type based alias
analysis” is actually slightly less precise than RTA, because it lacks an analogue of “exact
class types” (see Section 5.2.4). The differences were previously obscured because both the
analyses and their applications varied in tandem.

5.1.2 Decomposing RTA in Ajax
In Ajax, RTA is restructured into four distinct activities:

1. Computation of the set of live methods

2. Computation of the set of instantiated classes

3. Construction of an approximation to the value-point relation using static type informa-
tion and the set of instantiated classes

4. Application of the value-point relation to determine the callees of dynamic method
calls

Section 4.4.4 explains how for all analyses, Ajax computes a live method set using a
bottom-up fixpoint procedure, just as RTA does. This subsumes the first and fourth activ-
ities above.

Computing the set of instantiated classes from the set of live methods is trivial. We simply
scan the method bodies for occurrences of the QHZ instruction and note the class parameter
of each such instruction.

The subject of this chapter is the third activity: using static type information and knowledge
of the set of instantiated classes to implement the Ajax analysis interface.

Section 5.2 describes how this information is used to approximate the value-point relation.
Section 5.3 shows how to structure the computation to support the efficient analysis param-
eters described in Section 4.2. The chapter concludes with discussion of some extensions.

83

5.2 Approximating the Value-Point Relation

5.2.1 Overview
Abstractly, the task of any Ajax analysis is to determine whether a given pair of bytecode
expressions (B1, B2) is in the value-point relation. The decision must be conservative; if
there is any uncertainty, the analysis must assume that the pair is in the relation. The RTA
analysis receives as input a set L of the methods in the program that it must assume to be
live. It also has access to the program, so it can compute the class hierarchy.

The basic idea is to find static types for B1 and B2, and then compare the types to decide
whether it is possible for a value to conform to both of them simultaneously. These two
steps are elucidated in the next two subsections.

In this section I discuss the analysis in the context of full Java bytecode rather than the
MJBC subset language, because MJBC does not define a static type discipline analogous
to the Java Virtual Machine’s “verification” procedure and the Java type system. RTA
depends on the existence and soundness of such a type system.

5.2.2 Types for Bytecode Expressions
Each bytecode expression BL is a pair (lL, eL) consisting of a program location lL and an
expression eL�to be evaluated at that location. In principle, it is not difficult for Ajax RTA
to compute static types for the expressions, because the Java Virtual Machine computes
them while type checking Java bytecode [48].

A full explanation of Java bytecode type reconstruction and verification is beyond the
scope of this thesis. Such an explanation can be found in references such as the Java Virtual
Machine Specification [48]. Simply put, the type reconstruction algorithm performs intra-
procedural dataflow analysis, propagating facts about the types of values along data flow
paths. The sources of type information are type annotations on the bytecode instructions.

Ajax RTA has some requirements that are not met by the standard bytecode verification
algorithm.

• Ajax RTA differs from the standard JVM verifier in the way it merges object types at
control flow merge points. In order to obtain slightly better accuracy for RTA, instead
of moving up the class hierarchy to the most specific common superclass of the classes
being merged, Ajax creates a union type of the two types. For example, suppose 6XE�
and 6XE� are both subclasses of class 6XSHU. If a stack element has object type 6XE�
along one path and type 6XE� along another path, the standard Java verifier will give
the element type 6XSHU at the point where the paths merge. Ajax will give the element
the set of types { 6XE�, 6XE� }, interpreted as the union of those two types. If 6XSHU
has additional subclasses, then this union type is more precise than the type 6XSHU.

• The use of polymorphic bytecode subroutines can require an assignment of more than
one possible type to a value-point. In particular, if the location is within a subroutine
and the expression refers to a local variable that the subroutine does not touch, the sub-
routine may be called from multiple contexts that give different types to that variable.
Ajax RTA uses dataflow analysis to compute union types for this case.

84

• Expressions may denote local variables or stack elements in contexts where they have
not yet been initialized. In this case the “union set” of types is set to be empty, which
eventually causes the analysis to report that such expressions are not related to any
expression.

• For an expression denoting the field of an object, Ajax RTA simply uses the declared
type of the field. (Field names in a bytecode expression are always fully qualified with
the name of the class declaring the field, and are therefore unambiguous.) Therefore
Ajax computes a valid type even if the expression refers to a field of an uninitialized
variable. This behavior is sound, although it may lead to unnecessary pairs in the VPR
approximation. In practice accuracy does not suffer, because tools do not use such
expressions. (Java bytecode verification usually ensures that code cannot use unitial-
ized variables, and tools usually refer to variables at instructions where they are used or
defined.)

• Where the constant null occurs in the bytecode, we assign it the empty type set, because
null values do not induce relationships in the VPR.

5.2.3 Computing the Relation
Suppose two expressions B1 and B2 have union sets of Java bytecode types S1 and S2
respectively. If they are related in the VPR, then at run-time there is a non-null value v
appearing at both expressions. Thus, Y must conform to at least one static type from S1 and
at least one static type from S2. Ajax checks all pairs of types (s1, s2) in S1 © S2 to see if
there could be such a Y conforming to both types s1 and s2. If such a pair does not exist, then
there can be no relationship between the expressions; otherwise RTA assumes they are
related and includes the pair in its VPR approximation. This strategy is efficient in practice
because each set usually contains only one element; the special cases of polymorphic
subroutines and merging different object types are rare. If one of the sets is empty, the
algorithm yields the correct result: the expressions are not related.

Now the problem has reduced to the following: given two Java bytecode types s1 and s2,
can there be a non-null run-time value conforming to both s1 and s2?

To determine the answer, Ajax constructs a directed acyclic graph representing the
hierarchy of Java bytecode types. Figure 5-2 is an example. There is a root, TOP, the
supertype of all other types. The primitive types LQW, ORQJ, IORDW, and GRXEOH are all
distinct. There is a special type for bytecode return addresses, which arise when the Java
WU\/ILQDOO\ construct is compiled into bytecode MVU and UHW instructions. The Java
class hierarchy is inserted into the type graph, rooted at class 2EMHFW. Interfaces such as
6HULDOL]DEOH are also treated as types, which means that classes can have multiple
direct supertypes, as shown by 6WULQJ and &RPSRQHQW in the example. Each type repre-
senting a class (but not an interface) is labelled to indicate whether or not any objects with
that dynamic class can actually be created by the program. In the example, the instantiated
types are shown in bold. Primitive types and return addresses are always considered to be
instantiated.

If a run-time value conforms to static types s1 and s2, then its “run-time type” must be an
instantiated type. Therefore the intersection of the subgraphs rooted at s1 and s2 must
contain at least one instantiated type. In other words, if there is no instantiated type

85

reachable from both s1 and s2, then no non-null run-time value can conform to both s1 and
s2.

Figure 5-2 shows that no non-null value conforms to both ,WHP6HOHFWDEOH and
6HULDOL]DEOH, nor 2EMHFW and 5HWXUQ�$GGUHVV. On the other hand, there may be
a non-null value conforming to both 6HULDOL]DEOH and &RPSRQHQW; it must be a
/DEHO.

The smaller primitive types ERROHDQ, E\WH, VKRUW and FKDU, do not occur in the graph
because the Java Virtual Machine treats them as LQWs internally; the precise type is signif-
icant only when the value is loaded or stored in an object field or array. Therefore Ajax
RTA treats these types as identical to LQW.

Array types require special treatment. Every array type (e.g. 6WULQJ>@) has an associated
class in the Java bytecode, but the array classes do not capture the full subtyping properties
of arrays. Every array class is a subclass of 2EMHFW, &ORQHDEOH, and 6HULDOL]DEOH,
so every array type is a subtype of these types. However, every array of type 7>@ is also a
subtype of 6>@ when 7 is a subtype of 6. (This subtyping relationship is not semantically
reasonable — in fact it is unsound without dedicated run-time checks — but the Java
Virtual Machine does allow a variable with static type 6>@ to refer to an object of type
7>@.) These covariant subtyping relationships are not reflected in the JBC class hierarchy.
Ajax RTA adds these relationships to the graph separately.

The TOP type is included because some situations arise where the type of an expression is
not known. This can happen when expressions refer to native code specifications — see
Section 8.3.5.

5.2.4 Exact Class Types
In general, when a variable with a class type C occurs in a Java bytecode program, we
conclude that its value is an object of class C or any subclass of C. However, when the
variable is the direct result of a QHZ operation, we know that it is precisely the class

Figure 5-2. Example of a bytecode type graph

TOP

LQW ORQJ GRXEOHIORDW
2EMHFW

5HWXUQ�
$GGUHVV

6HULDOL]DEOH

6WULQJ&RPSRQHQW

/LVW /DEHO

,WHP6HOHFWDEOH

86

specified in the QHZ instruction. In this case, we give the variable an exact class type “C-
Only”. The only values conforming to this static type are objects of class C and no other.

This extension is necessary in order for Ajax RTA to be as accurate as traditional RTA. To
see this, suppose Ajax RTA is used with the type graph of Figure 5-2 to resolve the dynamic
method call V�KDVK&RGH�� in the program fragment in Figure 5-3.

The query tries to resolve the method call by collecting all classes C such that the result of
a “QHZ C” instruction is related to the variable V. Those classes are the possible receivers
of the method call.

Without exact class types, the static type of V is 6WULQJ, and the static types of [and \
are 2EMHFW and 6WULQJ respectively. Because 2EMHFW and 6WULQJ can have a non-
null value in common (namely, any 6WULQJ), Ajax RTA would conclude that V is related
to both sites, and therefore both 2EMHFW and 6WULQJ can receive the method call.
Because they have different implementations of KDVK&RGH, the call to V�KDVK&RGH��
would not be resolved.

With exact class types, the static type of V is still String, but the static types of QHZ�
2EMHFW and QHZ�6WULQJ are the exact class types “2EMHFW-Only” and “6WULQJ-
Only”. 2EMHFW-Only does not have any non-null values in common with 6WULQJ.
Therefore, the only QHZ site matching V is QHZ�6WULQJ, and the call is resolved as
expected.

The changes to the type graph are simple: Every inexact class type C that is instantiated
gains a new subtype, “C-Only”. C-Only has no subtypes and its sole supertype is C. The
instantiation annotations are changed to indicate that exact class types are instantiated
directly but inexact class types are not. The graph in Figure 5-2 is transformed into the
graph of Figure 5-4.

5.3 Implementing the Ajax Analysis Interface
The previous section specifies the approximation to the value-point relation computed by
Ajax RTA. This section describes an efficient implementation of the Ajax analysis
interface using this approximation.

Recall that the interface specifies the following parameters to the analysis:

• A type D of intermediate data to be propagated

• A type R of tool target data

YRLG�I�6WULQJ�V��2EMHFW�R��^
� V�KDVK&RGH���

R�KDVK&RGH���
`
����[� �QHZ�2EMHFW����\� �QHZ�6WULQJ����]� �QHZ�/DEHO����
���

Figure 5-3. A fragment illustrating the need for exact class types

87

• An associative, commutative, idempotent binary “merge” operator DM : D � D � D
with identity element DE

• A set S of source expressions from which data will be propagated

• A set T of target value-points to which data will be propagated

• An initial assignment of intermediate data to source expressions DI : S � D

• A map from target expressions to tool target data TR : T � R

The analysis computes:

where

This is computed efficiently using an extension of the subtype graph.

5.3.1 The Data Propagation Graph
Suppose that the original type graph given above consists of types Y with a subtype relation
Ysub. (If y1 has a subtype y2 then .) Let YI be the subset of the Y which are
actually instantiated. Ajax RTA constructs a new propagation graph with nodes

and edges

Figure 5-4. Example of a bytecode type graph

TOP

LQW ORQJ GRXEOHIORDW
2EMHFW

5HWXUQ�
$GGUHVV

6HULDOL]DEOH

6WULQJ&RPSRQHQW

/LVW /DEHO

,WHP6HOHFWDEOH
2EMHFW�2QO\

6WULQJ�2QO\

/DEHO�2QO\

G F V S³ W T³ .V W�P TR W() G=¾$|{ }[],() G range TR³|{ }

F { }[] DE=
F 3 4[] DM F 3[] F 4[],()=
F V{ }[] DI V()=

y1 y2,() Ysub³

PN In-t t Y³|{ } Out-t t Y³|{ }=

88

Informally, we make a copy of the subtype graph, flip the copy upside down, and then paste
it below the original graph with edges connecting original nodes to their copies, but only
for the nodes corresponding to types that are actually instantiated. The graph in Figure 5-4
is transformed into the graph shown in Figure 5-5.

Figure 5-5. Example of a propagation graph

PE In-y1 In-y2,() y1 y2,() Ysub³|{ }

Out-y2 Out-y1,() y1 y2,() Ysub³|{ } In-y Out-y,() y YI³|{ }

=

TOP

LQW ORQJ GRXEOHIORDW
2EMHFW

5HWXUQ�

$GGUHVV

6HULDOL]DEOH

6WULQJ&RPSRQHQW

/LVW /DEHO

,WHP6HOHFWDEOH

/LVW /DEHO

6WULQJ&RPSRQHQW

6HULDOL]DEOH,WHP6HOHFWDEOH

LQW ORQJ GRXEOHIORDW 2EMHFW 5HWXUQ�

$GGUHVV

TOP

In

Out

2EMHFW�2QO\

2EMHFW�2QO\

6WULQJ�2QO\

6WULQJ�2QO\

/DEHO�2QO\

/DEHO�2QO\

89

Lemma: Let “:” be the relation between expressions and their RTA types, as explained in
Section 5.2.2. RTA relates if and only if there is a path from In-js to Out-jt where
s : js and t : jt.

Proof: The RTA approximation to the value-point relation defines to mean that there
is an instantiated type w and types js, jt such that w is a subtype of js and jt, s : js and t : jt.
This implies that in the original type graph there is a path from js to w and from jt to w. Thus
in the propagation graph there is a path from In-js to In-w and from Out-w to Out-jt. There
is an edge from In-w to Out-w because w is instantiated. Thus there is a path from In-js to
Out-jt.

Now suppose there is a path from In-js to Out-jt where s : js and t : jt. There must exist an
edge in the path connecting In-w to Out-w� for some w and w�. All such edges are of the
form where y is an instantiated type, therefore w = w� and w is an instantiated
type. Furthermore there is a path from In-js to In-w; this path passes only through In nodes
(because there are no edges from any Out node back to an In node). This implies that there
is a path from js to w in the original graph, which means w is a subtype of js. Likewise, the
path from Out-w to Out-jt implies there is a path from jt to w in the original graph, meaning
w is also a subtype of jt. Combining all these facts about w shows that RTA will conclude

.

5.3.2 Computing Analysis Results
Now Ajax computes an assignment A of intermediate data D to the nodes of the propa-
gation graph, satisfying the following for all nodes y:

The idea is to start by assigning the initial data to each associated node, and then propagate
the data along the graph edges, merging the incoming data at each node. An example is
given below.

Ajax computes A iteratively as follows:

Initially A is set to the initial data associated with the In nodes. At each iteration, the value
at each node is updated from the values at all the node’s predecessors. The loop terminates
when .

The result of the analysis is then:

For each tool target datum G, this last pass collects and merges the values from each graph
node associated with a target expression associated with G.

The correctness of this result follows immediately from the lemma in Section 5.3.1.

s t�

s t�

In-y 2XW-y,()

s t�

A y() F DI s() s S³ 3DWK)URP In-MV y,() V:MV¾ ¾|{ }=

A0 y() F DI s() s S³ ,Q-MV y V:MV¾=¾|{ }=
An 1+ y() F An p() p y,() PE³|{ } An y(){ }()=

n 1+ y() An y()=

G F A MW() W T³ .TR W() G= W:MW¾$|{ }[],() G range TR³|{ }

90

5.3.3 Example
Consider the problem of determining the callees of the dynamic method calls in the
program fragment in Figure 5-3, using the graph in Figure 5-5. The query is set up as
follows:

An intermediate datum is a set of implementations of KDVKFRGH. The class /DEHO
inherits its KDVKFRGH method from 2EMHFW, and therefore there are only two distinct
implementations of KDVKFRGH: 2EMHFW�KDVK&RGH and 6WULQJ�KDVKFRGH.

D = #({ 2EMHFW�KDVK&RGH, 6WULQJ�KDVK&RGH })
DM =
DE = «
S = { [at statement [� �¡, \ at statement \� �¡,] at statement]� �¡ }
T = { V at statement V�KDVK&RGH��, R at statement R�KDVK&RGH�� }
R = { statement V�KDVK&RGH��, statement R�KDVK&RGH�� }
TR maps each expression to the statement it occurs in

The initial datum assignment maps the result of each QHZ instruction to the implementation
of KDVKFRGH used by the created object:

DI = [[� ^ 2EMHFW�KDVK&RGH }, \ � { 6WULQJ�KDVK&RGH },
] � { 2EMHFW�KDVK&RGH }]

The initial A is

A0 = [In-Object-Only � ^ 2EMHFW�KDVK&RGH },
In-String-Only � { 6WULQJ�KDVK&RGH },
In-Label-Only � { 2EMHFW�KDVK&RGH }]

All types not explicitly mapped are mapped to the empty set.

These values are propagated down the graph, using set union to merge them at nodes with
multiple incoming edges. The final value of A is:

A = [In-Object-Only � ^ 2EMHFW�KDVK&RGH },
In-String-Only � { 6WULQJ�KDVK&RGH },
In-Label-Only � { 2EMHFW�KDVK&RGH },
Out-Object-Only � ^ 2EMHFW�KDVK&RGH },
Out-String-Only � { 6WULQJ�KDVK&RGH },
Out-Label-Only � { 2EMHFW�KDVK&RGH },
Out-Label � { 2EMHFW�KDVK&RGH },
Out-Component � { 2EMHFW�KDVK&RGH },
Out-String � { 6WULQJ�KDVK&RGH },
Out-Serializable � { 6WULQJ�KDVK&RGH },
Out-Object � { 2EMHFW�KDVK&RGH, 6WULQJ�KDVK&RGH },
Out-TOP � { 2EMHFW�KDVK&RGH, 6WULQJ�KDVK&RGH }]

91

Thus Ajax RTA determines that the call to V�KDVK&RGH has possible receivers
A(Out-String) = { 6WULQJ�KDVK&RGH }, and the call to R�KDVK&RGH has possible
receivers A(Out-Object) = { 2EMHFW�KDVK&RGH, 6WULQJ�KDVK&RGH }. That is, the
statement V�KDVK&RGH�� will always call the implementation in the 6WULQJ class (and
could be replaced by a static method call), but the statement R�KDVK&RGH�� may call the
implementation in the 6WULQJ class or the implementation in the 2EMHFW class.

5.3.4 Performance
Ajax RTA implements the above algorithm using a worklist. The number of steps required
is simply the number of times an element of A is changed. Typically a tool chooses its DM
operator so that the data at a node can only change a small number of times before reaching
a fixed point. If DM is thought of as a lattice join operator, then the tool should choose a
lattice with a small height. If the height is indeed bounded by a small constant, then the time
to compute A’s fixed point is proportional to the size of the propagation graph, which is
roughly proportional to the size of the program. If the sizes of the S and T sets are also
proportional to the size of the program, the whole algorithm runs in linear time.

Quantitative performance measurements of this implementation of RTA are presented in
Section 9.4.

5.3.5 Incrementality
The algorithm described here is quite simple. However, the implementation is nontrivial
because many of the inputs are updated dynamically, and the analysis must update its
results dynamically in response. In particular:

• The live method set can increase at any time, which means that new classes may be
found to have instances.

• The set of classes in the program can increase at any time, as they are loaded on
demand. This means that classes can acquire new subclasses.

• At any time, a tool can add to its S set and T set and corresponding DI and TR entries.

None of these issues have a major impact on performance, but they significantly complicate
the implementation, because new nodes and edges are added to the propagation graph
during processing.

5.4 RTA++: Tracking Typecases

5.4.1 Motivation
Java lacks a “typecase” statement or expression. Instead, the programmer must use a
combination of LQVWDQFHRI and downcasts to first test whether an object belongs to a
certain class, and then downcast the object reference if it belongs to the class. Figure 5-6
shows an example; similar patterns occur frequently in many programs. The
LQVWDQFHRI guard ensures that the downcast is completely safe.

I have extended Ajax RTA to prove that these downcasts are safe. The resulting analysis is
called “RTA++”.

92

5.4.2 Refining the Bytecode Type Assignment
The idea is to improve the accuracy of the procedure of Section 5.2.2, which assigns static
Java types to expressions. In Figure 5-6, the occurrence of [inside the LI body will be
assigned the Java type &. The analysis then concludes that [can only be aliased to instances
of C or its subclasses; with this information, the Ajax downcast checking tool proves that
the downcast is safe.

The improved static type assignment requires some simple intraprocedural data flow
analysis. First, Ajax RTA computes “must alias”information for all local variables and
stack elements, using value numbering. For each boolean variable or stack element, Ajax
also determines whether the value corresponds to the result of an LQVWDQFHRI operation,
and if so, which variable and class were tested.

The basic algorithm for computing static Java types for value-points uses standard forward
data flow analysis. For each instruction, there is a “transfer function” describing how the
types of variables and stack elements at the successor instruction(s) depend on the types of
the variables and stack elements at the current instruction. In the RTA++ algorithm, the
transfer function corresponding to a conditional branch checks to see whether the branch
condition is the result of an LQVWDQFHRI. If so, then in the “branch taken” case all known
aliases to the tested variable are known to be instances of the tested class. This fact is used
to narrow the types assigned to the aliased variables at the successor instruction.

Similar techniques have been used by JIT compilers [18] to reduce the overhead of
LQVWDQFHRI/FKHFNFDVW pairs.

This technique could also improve the accuracy of other tools using Ajax RTA, but in
practice the effect is only noticeable for the downcast checking tool.

FODVV�&�^
����2EMHFW�ILHOG$�
����2EMHFW�ILHOG%�
����SXEOLF�ERROHDQ�HTXDOV�2EMHFW�[��^
��������LI��[�LQVWDQFHRI�&��^
������������&�F� ��&�[�
������������UHWXUQ�F�ILHOG$�HTXDOV�ILHOG$�
����������������		�F�ILHOG%�HTXDOV�ILHOG%��
��������`�HOVH�^
������������UHWXUQ�IDOVH�
��������`
����`
`

Figure 5-6. A Java program using LQVWDQFHRI and FKHFNFDVW

93

6 The SEMI Analysis

6.1 Introduction

6.1.1 Chapter Overview
Previous work [54] investigated using Hindley-Milner style polymorphic type inference to
extract a VPR-like relation from C programs. This thesis extends that work by introducing
an analysis with new features, including support for Java bytecode programs. This analysis
is called SEMI (short for “semiunification”). SEMI combines the following features:

• A flexible and robust framework based on type inference with polymorphic recursion.

• A number of modes and optimizations allowing varying tradeoffs between time, space
and accuracy.

• A formal model in terms of the Micro Java Bytecode language and the value-point rela-
tion.

• A proof of soundness in terms of the model.

• An implementation within the Ajax framework which allows SEMI to be used with a
variety of tools, and in combination with other analyses such as RTA. (However, SEMI
is completely independent of the other analyses.)

Standard analyses based on type inference are based on constraints. They define a language
of terms, including variables standing for terms, and a language of constraints holding
between terms. Syntax driven rules specify the construction of an initial constraint set for
any given program. The constraints are solved to find canonical or minimal solutions, i.e.,
assignments of terms to variables. The inference system is constructed so that the solutions
represent certain invariants of the program.

SEMI follows a similar pattern. However, to simplify the presentation, SEMI does not use
terms; term structures are encoded using “component constraints”, and information about
term constructors is omitted. In SEMI, constraints hold only between atomic variables. A
SEMI variable can be thought of as the inferred type of a program variable. More
discussion of this presentation is given below in Section 6.2.1.2.

Although SEMI is inspired by type inference, and it is useful to apply intuitions about type
inference to help understand SEMI, SEMI is not in fact a type inference algorithm.
Formally, it is nothing more than a system for computing an approximation to the value-
point relation. Nevertheless, in this chapter I use the word “type” to refer to information
computed by SEMI. Java types are largely irrelevant to SEMI, and my use of the word
“type” never refers to Java types unless explicitly noted.

94

This chapter gives a formal specification for SEMI, as applied to the Micro Java Bytecode
language, and a proof that any algorithm satisfying the specification computes a conser-
vative approximation to the VPR. The details of the implementation are deferred to the next
chapter.

6.1.2 Approach
I have chosen to present a direct proof of soundness in terms of MJBC, rather than trans-
lating to and from a more traditional lambda language and doing the proof in a conventional
setting. Consequently, the proof is rather long and the style may be unfamiliar. However, a
proof in a conventional setting would also be rather difficult, because even after translation
the system would contain the following features:

• Higher-order functions

• Polymorphic functions

• Unrestricted recursion (declarations not block-structured)

• Records

• Row-polymorphism (record types polymorphic over a set of “unknown” additional
fields)

• Polymorphic recursion

• Mutable references

• Exceptions

• Soft typing

Specifying and proving the correctness of the analysis directly in terms of MJBC also keeps
the formal presentation closer to the actual implementation.

6.1.3 Implications
This chapter does not merely confirm facts already believed. It also reveals that the
analysis places no static constraints on the program whatsoever. Even though the imple-
mentation assumes that the Java program passes bytecode verification and is therefore stati-
cally well-typed according to the Java language rules, the system presented here does not.
In other words, SEMI could be implemented without making any assumptions about the
target program.

This is useful in practice, because it means that variations in the static verification policies
of different virtual machines have no impact on SEMI. It is also useful because it means
that Ajax could be applied to ill-formed programs, such as programs undergoing modifica-
tions — provided those programs can be translated into bytecode.

Note that according to the semantics of MJBC, the execution of a program which would not
be statically well-typed according to Java may reach a state in which no normal transition
is possible. For example, a program may attempt to fetch a field when the top of the
working stack does not contain an object reference. However, according to the semantics,
a spontaneous exception throw is always possible. This implies that a program will never

95

“get stuck”; when no normal transition is possible, it will simply throw a spontaneous
exception. Of course, if the exception is not caught, the method call stack will unwind and
the program will eventually halt due to the uncaught exception.

This is realistic, as many VMs can report type errors during execution, when code is
dynamically and lazily linked. SEMI can account for such behavior.

6.1.4 Relationship to the Implementation
The constraints and rules described here are almost the same as those implemented in
SEMI, for the subset of Java bytecode corresponding to MJBC.

One small but significant departure of this formalism from the implementation is the
treatment of one constraint for the QHZ instruction. (See footnote “a” below, on page 112.)
I believe that the implemented constraint is correct, but it would require significant
additional work to extend the proof system to accommodate it.

SEMI’s implementation incorporates a number of optimizations that mean some of the
constraints here never arise. For example, exceptions and the globals object are
“globalized” (see Section 7.6), and no instance constraints are ever applied to them. When
only one instance of a particular variable is possible, SEMI replaces the instance constraint
with an equality, which gives the same results and saves time and space. (Intuitively, if
there is only one instance of a polymorphic value, it may as well not be polymorphic.)
These optimizations are applied in the constraint generation phase, so the constraint gener-
ation code does not correspond closely to the description here. For details, see Chapter 7.

6.1.5 Chapter Organization
Section 6.2 describes the sets of constraints used by SEMI, and defines a “closed form” for
these sets that represents a solution to the constraints. All discussion of how to produce such
a closed form is deferred to Chapter 7. Section 6.3 presents an informal overview of how
SEMI treats Java programs, by translating Java bytecode examples into a functional
language whose standard typing rules would induce similar constraints to SEMI’s.
Section 6.4 defines the initial constraint set for an MJBC program and presents a complete
example of a program and its analysis using constraints. In Section 6.5 the relationship
between the VPR and constraint sets is formally defined. The definition requires some
auxiliary judgements, which are defined and some properties of which are proved. The
implementation of the Ajax tool interface using SEMI is discussed in Section 6.6.

The remainder of the chapter is Section 6.7, which proves that any closed constraint set
gives rise to a sound VPR approximation. This is similar to a proof of soundness of a type
system, but rather different in flavor due to the non-traditional setting. This section, and
part of Section 6.5, contain a great deal of rather dense mathematics. The casual reader
should focus on the statements of lemmas and theorems, which describe the invariants of
SEMI that make it sound.

96

6.2 Constraint System

6.2.1 Constraints

6.2.1.1 Constraint Structures
7KH�6(0,�VROYHU�XVHV�WKH�IROORZLQJ�VWUXFWXUHV�

• V — the set of variables
These can be thought of as type variables. Each program variable (or in general, each
bytecode expression) has a SEMI variable associated with it.

• L — the set of component labels (e.g., SDUDP, UHVXOW, ILHOG$)
SEMI treats these as abstract entities and assigns no meaning to them. They are used in
component constraints.

• I — the set of instance labels
Each instance label represents a program site at which a polymorphic value is being
used. SEMI treats them as abstract entities and assigns no meaning to them. They are
used in instance constraints.

• C — a set of constraints of the following kinds:

• “X @ Y” — an equality constraint expressing the fact that the two variables u and v
are to be considered identical. In the presence of such a constraint, two bytecode
expressions which are mapped to constraint variables X and Y respectively will be
considered related in the value-point relation.

� ³X EF�Y´�²�D�FRPSRQHQW�FRQVWUDLQW�H[SUHVVLQJ�WKH�IDFW�WKDW�YDULDEOH�X¶V�FRPSRQHQW�
ZLWK�ODEHO�F�LV�YDULDEOH�Y��7KHVH�FRQVWUDLQWV�FDQ�EH�WKRXJKW�RI�DV�HQFRGLQJ�WKH�VWUXF�
WXUH�RI�WHUPV��7KH\�DUH�XVHG�WR�UHODWH�W\SHV�RI�REMHFW�UHIHUHQFHV�WR�WKH�W\SHV�RI�WKHLU�
ILHOGV��DQG�DOVR�WKH�W\SHV�RI�PHWKRGV�WR�WKH�W\SHV�RI�WKHLU�SDUDPHWHUV�DQG�UHVXOWV�

• ³X�)L�Y´�²�DQ�LQVWDQFH�FRQVWUDLQW�H[SUHVVLQJ�WKH�IDFW�WKDW�YDULDEOH�X¶V�LQVWDQFH�L�LV�
YDULDEOH�Y��,QWXLWLYHO\��Y�FDQ�EH�WKRXJKW�RI�DV�WKH�L¶WK�FRS\�RI�X��In the presence of
such a constraint, two bytecode expressions mapping to variables X and Y respec-
tively will be considered related in the value-point relation.

,I�WKH�FRQVWUDLQW�X�)L�Y�LV�SUHVHQW�LQ�D�VHW��WKHQ�,�ZULWH�³Y�LV�DQ�LQVWDQFH�RI�X´�DQG�³X�LV�D�
VRXUFH�RI�Y´��7KH�VHW�VKRXOG�EH�FOHDU�IURP�FRQWH[W��,I�³X EF�Y´�LV�LQ�D�VHW��WKHQ�,�ZULWH�³Y�LV�
D�FRPSRQHQW�RI�X´�DQG�³X�LV�D�SDUHQW�RI�Y´�

The rules that assign an initial constraint set to a program are given in Section 6.4.

6.2.1.2 Relationship to Terms
To illustrate the relationship between standard polymorphic recursion [42] and this setting,
consider the following code, expressed in a typed lambda calculus. This is a function to
swap the two elements of a pair.

lx. snd x() fst x(),()

97

where “fst” and “snd” are the standard projection operations on pairs. While performing
type inference with polymorphic recursion, the following constraint arises for the type of
“snd” itself, when we consider the invocation of the operator “snd”:

This represents the fact that the type of “snd”, which is known to be (where t0
and t1 are type variables standing for arbitrary types), is instantiated at program point
to some currently unknown function type (where u1 and u2 are also type variables
standing for arbitrary types). (would be the program point of the call to the “snd”
function.) In other words, the type is constrainted to be a polymorphic instance of

.

This constraint on terms could be translated into the following set of SEMI constraints:

Note that the terms have been decomposed into variables related by component constraints.
This has required the introduction of new variables Tsnd, Tsnd-p, and v to represent the
compound terms and subterms , and respectively. The term
constructors have disappeared entirely. This is why SEMI is not suitable as a type inference
system; it can never detect conflicts between type constructors. In a situation where term
unification would fail due to constructor mismatch, SEMI assigns different kinds of
components to the same variable. For example, it might infer that a variable has both
“tuple-Q” and “param” components, as if the variable were both a tuple and a function. This
is in fact an advantage for SEMI; it will never reject a program as unsuitable for analysis.
(In other words, SEMI is a “soft typing” system [85].)

The advantage of the SEMI representation is that it is very simple, yet carries all the infor-
mation required to perform the analysis. Its particular advantage is in representing recursive
structures, which are very common in this kind of analysis; standard term representations
need to be extended with recursive constructs such as ³mt�7´��ZKHUH�³t”�RFFXUV�IUHH�LQ�7��
PHDQLQJ�WKH�VROXWLRQ�WR�WKH�IL[SRLQW�HTXDWLRQ�“t� �7�t�´�

6.2.2 Solutions
A solution to a constraint set & is another constraint set such that and is
closed. A closed constraint set can be thought of as a set in which all implicit relationships
implied by the constraints are stated explicitly. A VPR approximation can be efficiently
computed from such a set. & is closed if it satisfies the conjunction of the following condi-
tions: (W, X, Y and Z range over constraint variables)

• Equality closure: equality constraints in a closed set possess the usual properties of
symmetry, transitivity and substitutional equivalence.

t0 t1,() t1�)Z1
 u1 u2�

t0 t1,() t1�
Z1

u1 u2�
Z1

u1 u2�
t0 t1,() t1�

Tsnd Eparam Tsnd-p Tsnd-p Etuple-0 t0 Tsnd-p Etuple-1 t1 Tsnd Eresult t1 Tsnd)Z1
 v

v Eparam u1 v Eresult u2

, , , , ,

,

{

}

t0 t1,() t1� t0 t1,() u1 u2�

&� & &�² &�

W X, . W @ X{ } &² X @ W{ } &²Ã"
W X Y, , . W @ X X @ Y,{ } &² W @ Y{ } &²Ã"
W X Y F, , , . W @ X W EF Y,{ } &² X EF Y{ } &²Ã"
W X Y F, , , . W @ X Y EF W,{ } &² Y EF X{ } &²Ã"
W X Y L, , , . W @ X W)L Y,{ } &² X)L Y{ } &²Ã"

98

Equality is meant to be reflexive, but it is troublesome to require reflexivity constraints
as explicit elements of the constraint set. The obvious rule is unde-
sirable because it requires & to contain an infinite number of constraints. A more com-
plex definition is possible, but in fact there is no need for explicit reflexivity
constraints, so they are not required to be in the set.

• Component uniqueness: a variable has at most one distinct component with a given
label.

• Instance uniqueness: a variable has at most one distinct instance with a given label.

• Component propagation: if a variable has a component Y, then its instances also have
the component.

• Instance propagation: instance relationships propagate to matching components.

Given any finite set of constraints &, there is always a finite solution set such that
 and is closed. For example, the set could be & with equality constraints

added between all variables mentioned in &, and all instance and component relationships
holding between all the variables. This would be a correct solution, but not a very useful
one because the induced value-point relation would relate every pair of bytecode expres-
sions.

A more realistic strategy is to interpret the closure rules as production rules. At each step,
if the set of constraints is not closed, the algorithm selects a rule whose hypothesis is
satisfied but whose consequent is not and adds the constraint required to satisfy the conse-
quent. Unfortunately, this algorithm does not terminate for practical examples.

Discussion of the actual SEMI algorithm is deferred to Chapter 7. In this chapter, I treat it
as a black box and show that given an appropriate set of initial constraints, any closed
solution gives rise to a conservative approximation of the value-point relation.

6.2.3 Remarks
Simplifications of the closure rules give rise to a number of previously studied analyses.
For example, if one takes only the equality closure rules plus two rules below forcing
components and instances to be degenerate, one obtains a simple monomorphic, struc-
tureless type inference analysis similar to Steensgard’s [72]:

If one takes only the equality rules and the component uniqueness rule, and forces instances
to be degenerate, then one obtains a monomorphic type inference analysis with structures.
This system essentially performs simple term unification. Cycles in the graph of component
constraints are allowed, and correspond to recursive type terms.

W X Y L, , , . W @ X Y)L W,{ } &² Y)L X{ } &²Ã"

X. X @ X{ } &²"

W X Y F, , , . W EF X W EF Y,{ } &² X @ Y{ } &²Ã"

W X Y L, , , . W)L X W)L Y,{ } &² X @ Y{ } &²Ã"

W X Y F L, , , , . W EF X W)L Y,{ } &² Z . Y EF Z{ } &²$Ã"

W X Y Z F L, , , , , . W EF X W)L Y Y EF Z, ,{ } &² X)L Z{ } &²Ã"

&�
& &�² &� &�

W X Y F, , , . W EF X{ } &² X @ W{ } &²Ã"

W X Y L, , , . W)L X{ } &² X @ W{ } &²Ã"

99

With the full treatment of polymorphic instance constraints as described, the system corre-
sponds to type inference with polymorphic recursion using semiunification, again with
recursive terms allowed. (The term “polymorphic recursion” means that cycles in the graph
of instance constraints are allowed, such as when a polymorphic function recursively calls
itself and passes in one of its original parameters.)

In general it is not possible to compute a “most general” or “principal” closed constraint
set. This is discussed further in Section 7.1.2.

6.3 The Encoding

6.3.1 Introduction
SEMI generates a set of initial constraints directly from a bytecode program and then solves
them to find a closed form. However, the procedure can be viewed conceptually as a trans-
lation from the bytecode language into an extended lambda calculus, followed by gener-
ation of type constraints for the translated code, followed by solution of the type constraints
to yield inferred types. Here I provide an informal description of SEMI from the latter point
of view.

6.3.2 Methods
Each Java bytecode method declaration is translated to a function declaration. Each
function can take multiple parameters directly — no currying is used. The implicit “this”
parameter of non-static methods becomes an explicit parameter in the translation.
Functions return two values: the value returned normally by the method, and the thrown
exception, if any. Methods that return nothing (“void”) have a return value in the trans-
lation, but the value is always ignored. (In the formal MJBC semantics, every function
returns a value, so this issue does not arise.)

Therefore this method that adds 3 to [

LQW�DGG��LQW�[��^�ORDG�[��ELSXVK����LDGG��LUHWXUQ��`

translates to the equivalent of

IXQ�DGG��WKLV��[�� ��[������«�

The “«” indicates that there is no value for the exception; its type is unconstrained. This
means that, after type inference, the type of the exception will be a unique type variable.
SEMI will conclude that the exception is not related in the VPR to any other value, as one
would hope, since there is in fact no exception. (Obviously “«” precludes the translated
code from being executable, but that is not a problem.) (A sum type could be used instead
of a pair, to indicate that only one of the alternatives is possible, but this leads to essentially
the same type constraints.)

Methods are assigned function types. The above method would be assigned the following
“type”:

DGG�: "D��E��H. (D) � (E, e)

100

The intuition behind the interpretation of these types is that if two variables can be inferred
to have different types, then they cannot be aliased in the VPR sense. If they are always
inferred to have the same type, then they may be aliased.

Even though the [parameter’s real type is LQW, we assign it a type variable so that we can
compare its type meaningfully with the types of other variables which also hold integers.
For example, here we can see that the value returned by DGG� is a new integer, different
from the parameter. (We can also see that the parameter and result are both different from
whatever exception may be thrown by DGG�.)

In SEMI, these inferred types become atomic constraint variables connected by component
constraints as discussed in Section 6.2.1.2. For example, the above type would be repre-
sented as

DGG�: T, where the constraint set contains
{ 7 Eparam-0�a, T Eresult�b, T Eexn e `

6.3.3 Global Variables
Global variables (Java “static fields”) are passed into all functions in an extra record
parameter. Each slot of the record corresponds to one global variable. For example, the
method

LQW�JHW*OREDO���^
��JHWVWDWLF�JOREDO9DU��LUHWXUQ�
`

translates to the equivalent of

IXQ�JHW*OREDO�JOREDOV��
���JOREDOV�JOREDO9DU��«�

The function simply performs the assignment and then returns no result and no exception.
The following type signature would be inferred for this function:

JHW*OREDO: "D, H, r. ({ globalVar: D; r }) � (D, e)

This signature requires JOREDOV to have a field JOREDO9DU of type D, which must be
the same type as the result. The polymorphic type variable r, sometimes referred to as a
“row variable”, represents the types of an unknown set of other fields of JOREDOV (i.e.,
other global variables). This signature allows the other global variables to have any type.

This treatment of globals means that all function bodies are closed, i.e., refer only to
variables defined locally or available as parameters, or to other functions. Therefore, in the
type inferred for each function, every type variable can be polymorphically generalized. (In
the language of Hindley-Milner type inference, every type variable is free in the enclosing
type environment.)

If global variables were instead declared as variables in the enclosing environment, e.g.,

OHW�JOREDO9DU� �UHI���LQ
��IXQ�JHW*OREDO��� ��JOREDO9DU��«�

then the type signatures would be

101

JOREDO9DU: D

JHW*OREDO: "H. () � (D, H)

The expression UHI�� indicates that JOREDO9DU is mutable and therefore its type cannot
be polymorphically generalized; usage of JOREDO9DU in different contexts may refer to
the same runtime value, and therefore JOREDO9DU must have the same type D in all
contexts. Similarly, in the type inferred for JHW*OREDO, D cannot be polymorphically
generalized because it is constrained to the type of JOREDO9DU.

The two strategies actually produce the same analysis results, because even when each
function takes the global variable record as a polymorphic parameter, there is really only
one global variable record in the program and one “canonical” type for this record (its type
in the program’s PDLQ function). This “top level” type is a polymorphic instance of every
other type for the global variable record. Lemma 6-21 below and Section 7.6 explain this
in more detail.

For simplicity, SEMI uses explicit global variable passing, so that every type variable in a
function signature is polymorphically generalized. The implementation performs optimiza-
tions for types (such as the types of global variables) that have only one meaningful
instance; this is discussed in Section 7.6. In the rest of this section the global variable
passing is ignored for the sake of brevity.

The “row variables” do not occur in SEMI’s constraints. They are implicit. For example,
the above method would be given the following constraints:

JHW*OREDO: T
where the constraint set contains
{ 7 Eglobals�Tglobals, Tglobals EglobalVar�a, T Eresult�a, T Eexn e `

6.3.4 Object Encoding
Java objects are treated as extensible records, each similar to the “global variables” record.
Each slot of the record contains either a field or a method. For example, the code

LQW�JHW;���^
��ORDG�WKLV��JHWILHOG�ILHOG;��UHWXUQ�
`

would translate to (ignoring the globals object for now)

IXQ�JHW;�WKLV��
���WKLV�ILHOG;��«�

This would get type signature

JHW;: "D, G, r. ({ fieldX: D; r }) � (D, G)

Here WKLV is deconstructed into a record containing field ILHOG; of type D and some set
of other fields of types r. Effectively, this function and its type say nothing about what
other fields of WKLV there may be. Any object containing a ILHOG; can be passed in. In
fact, any object at all can be passed in, and the type inference algorithm will infer that it
contains ILHOG;. This “row polymorphism” avoids any need for subtype polymorphism
in this type system. (This complete reliance on row polymorphism distinguishes this type

102

system from the type system of O’Caml [65], where row polymorphism is available but
explicit classes and subtyping are usually used instead.) It also helps reduce the sizes of
types inferred for functions, because only fields actually used by the function are given
types in the function’s signature.

Field names are always fully qualified with the name of the class in which they are
declared, so two fields of different classes which happen to have the same name are never
confused in the translation.

The Java class of an object is never represented in the translation or in the type inference
system. The implications of this are discussed in the following sections. Tools based on
SEMI can recover class information using the VPR; this is discussed in Chapter 10 and
elsewhere.

6.3.5 Method Encoding

6.3.5.1 Static Methods
Static methods are treated as normal functions. A call to a static method is translated into a
direct call to the appropriate function. For example, the code in Figure 6-1 would be trans-
lated to the equivalent of the code in Figure 6-2.

Because the function DGG2QH is a polymorphic value, its use in DGG2QH:UDSSHU is
assigned a fresh polymorphic instance of the type of DGG2QH. All calls to static methods
are treated polymorphically. (In other words, static method calls are analyzed with calling-
context sensitivity.) Intuitively, this is safe because (being closed) distinct calls to DGG2QH
are completely independent and cannot communicate except through the caller’s
environment.

6.3.5.2 Nonstatic Methods
Nonstatic methods — that is, methods involved in dynamic dispatch — are encoded by
treating them as functions assigned to the slots of objects when those objects are created.
For example, the code in Figure 6-3 would be translated to the equivalent of the code in
Figure 6-4.

VWDWLF�LQW�DGG2QH�LQW�[��^
��ORDG�[��ELSXVK����LDGG��LUHWXUQ�
`
VWDWLF�LQW�DGG2QH:UDSSHU�LQW�\��^
��ORDG�\��LQYRNHVWDWLF�DGG2QH��LUHWXUQ�
`

Figure 6-1. Static Method Example

IXQ�DGG2QH�[��
���[������«�
IXQ�DGG2QH:UDSSHU�\��
���DGG2QH�\���«�

Figure 6-2. Static Method Translation

103

The following types are inferred:

0\2EMBJHW;: "D, H, r. ({ MyObj_fieldX: D; r }) � (D, H)
JHWWHU: "E, H, r. (W) � (E, H) where W = { getX: (W) � (E, H); r }
REM (in PDLQ): u where u = { getX: (X) � (F, H); MyObj_fieldX: F; r }

(for some F,�H, r)

Note that objects containing methods usually have recursive types, because the type of the
WKLV parameter in each method type is usually the same as the object type.

Another example of the treatment of virtual method calls, expressed directly in the
constraint language of SEMI, is given below in Section 6.4.7.

6.3.5.3 Type Checking/Inference For Nonstatic Methods
Given the above types and assuming standard type checking rules, it is straightforward to
show that the types are consistent with the code and each other.

For example, to typecheck JHWWHU, we observe that the type of R is W, and therefore the
type of R�JHW; is (W) � (E, H). In the call to R�JHW;, we indeed pass in a parameter of
type W (R). Furthermore, the result returned from JHW; has type (E, H), which correctly
matches the return type of JHWWHU.

Note that JHWWHU is typechecked (and can have its type inferred) independently of any
information about the callee in the call to JHW; (0\2EMBJHW;). All that is required is that
the type of the JHW; method recorded in the type of JHWWHU’s R parameter is consistent
with the actual usage of that method within JHWWHU. The type information recorded for

FODVV�0\2EM�^
��LQW�ILHOG;�
��LQW�0\2EMBJHW;�0\2EM�WKLV��^
����ORDG�WKLV��JHWILHOG�0\2EMBILHOG;��LUHWXUQ�
��`
`
VWDWLF�LQW�JHWWHU�2EMHFW�R��^
��ORDG�R��LQYRNHYLUWXDO�JHW;��LUHWXUQ�
`
VWDWLF�LQW�PDLQ���^
��QHZ�0\2EM��LQYRNHVWDWLF�JHWWHU��LUHWXUQ�
`

Figure 6-3. Nonstatic Method Example

IXQ�0\2EMBJHW;�WKLV��
���WKLV�0\2EMBILHOG;��«�
IXQ�JHWWHU�R�� ��R�JHW;��R�
IXQ�PDLQ���
��OHW�REM� �^�JHW;��0\2EMBJHW;��0\2EMBILHOG;�����`
��LQ�JHWWHU�REM�

Figure 6-4. Nonstatic Method Translation

104

JHW; in the type signature of JHWWHU effectively describes how the method is used by
JHWWHU.

To check the type of REM in PDLQ, observe that it constrained both by the initialization of
REM as a new 0\2EM object and by REM being passed as a parameter to JHWWHU. The
initialization of REM requires REM’s type u to be the type of an object containing a JHW;
method and a 0\2EMBILHOG; field. Furthermore, the type of the JHW; method within u
must be a polymorphic instance of the type of 0\2EMBJHW; (which is “"D, H, r.
({ MyObj_fieldX: D; r }) � (D, H)”). If no method call was made on the object, we could
therefore just set u = { getX: ({ MyObj_fieldX: F, r }) � (F, H); MyObj_fieldX: G; r' } (for
some F, d, e, r, r').

However, the type of REM is also constrained by the call to JHWWHU�REM�. This call
requires u to be some polymorphic instance of JHWWHU’s parameter type t, where W =
{ getX: (W) � (E, H); r }. Because the parameter type of t’s JHW; method is t itself, the
parameter type of u’s JHW; method is also required to be u itself. Unifying this constraint
with the constraints mentioned above requires u to be of the form { getX: (X) � (F, H);
MyObj_fieldX: F; r }.

Note also that the type signature of JHWWHU promises that its result has the same type (b)
as the result of its object parameter’s JHW; method. Therefore in PDLQ we learn that the
result of the call to JHWWHU will have type c.

6.3.5.4 Treatment Of Polymorphism
The call to JHWWHU in PDLQ is treated polymorphically; the caller’s parameter and result
types are required to be some polymorphic instance of the callee’s types. On the other hand
the call to JHW; from JHWWHU is not treated polymorphically; the caller and callee types
must be identical.

The technical reason for this distinction is that we can only polymorphically generalize type
variables that are not bound in the current type environment. All the type variables in the
type assigned to JHWWHU are polymorphically generalized, because they do not occur
anywhere outside the definition of JHWWHU. (Intuitively, this means that the assignment of
types to these variables is independent of anything outside JHWWHU, and therefore different
types can be chosen for each use of JHWWHU.) On the other hand, in JHWWHU, the type
variables in the type of the callee R�JHW; are bound in the type environment; in particular
they occur inside JHWWHU’s parameter type. (Intuitively, this means that the assignment of
types to these type variables is constrained by the caller of JHWWHU. For example, the caller
of JHWWHU might pass in an object whose JHW; method always returns an integer.
Obviously it would be unsafe to allow JHWWHU to choose different return types for each
call to JHW;.)

6.3.5.5 Polymorphism In Object Creation
When an object is created, such as when REM is created in PDLQ, its field and method slots
are always iniitalized with constant values — either zero scalar values, or the functions that
implement the methods supported by the object. The usage of these constant values is
always treated polymorphically. Therefore if a method implementation is inherited into
multiple classes, which are instantiated at multiple sites, the references to the method

105

implementation at each site can be given distinct types. Similarly, fields of objects of the
same class created at different sites can be given distinct types.

6.3.6 Extensible Records and Object Classes
Consider the code in Figure 6-5. This example demonstrates the use of subclass polymor-
phism with subclasses having distinct fields.

The following types are inferred:

0\2EMBJHW;: "D, H, r. ({ MyObj_fieldX: D; r }) � (D, H)
<RXU2EMBJHW;:"E, H, r. ({ YourObj_otherX: E; r }) � (E, H)
JHWWHU: "F, H, r. (W) � (F, H) where W = { getX: (W) � (F, H); r }
object in PDLQ: u where u = { getX: (X) � (F, H); MyObj_fieldX: F;

YourObj_otherX: F; r } (for some F,�H, r)

In general, if Java declares a variable to be of class C (here, 6XSHU2EM), then any fields
and methods belonging to C or any subclass of C (here, 0\2EM and <RXU2EM) can appear
in the type inferred for the variable. This can lead to the slightly counterintuitive situation
where variables having the least constraining Java types (e.g., variables of type 2EMHFW)
have the most complex inferred types.

FODVV�6XSHU2EM�^
��DEVWUDFW�LQW�JHW;�6XSHU2EM�WKLV��
`
FODVV�0\2EM�^
��LQW�ILHOG;�
��LQW�JHW;�0\2EM�WKLV��^
����ORDG�WKLV��JHWILHOG�0\2EMBILHOG;��LUHWXUQ�
��`
`
FODVV�<RXU2EM�^
��LQW�RWKHU;�
��LQW�JHW;�<RXU2EM�WKLV��^
����ORDG�WKLV��JHWILHOG�<RXU2EMBRWKHU;��LUHWXUQ�
��`
`
VWDWLF�LQW�JHWWHU�6XSHU2EM�REM��^
��ORDG�REM��LQYRNHYLUWXDO�JHW;��LUHWXUQ�
`
VWDWLF�LQW�PDLQ���^
��LI�«�WKHQ�QHZ�0\2EM�HOVH�QHZ�<RXU2EM�
��LQYRNHYLUWXDO�JHW;��LUHWXUQ�
`

Figure 6-5. Extensible Record Example

106

6.3.7 Mutability
Global variables and fields of objects are mutable. However, in the type system I have not
distinguished mutable and immutable slots of records. The distinction is irrelevant because
whenever a slot of a record is accessed, the record has a monomorphic type and therefore
the type of the slot is monomorphic. Thus two accesses to the same slot of a record, whether
reads or writes, always get the same type for the slot. (The fatal error would be to treat a
mutable slot of a record as polymorphic; we might store a value in the slot with one type,
retrieve the value with another type, and thus destroy soundness.)

6.3.8 Control Flow
Internally, a Java bytecode method is simply an array of bytecode instructions with
arbitrary control flow between them. SEMI treats each bytecode instruction as a local
function which takes the values of the current working stack and local variables as param-
eters, and calls the successor instruction(s) as tail calls. Each local function returns the final
result of the method and its thrown exception.

The stack is passed as a list, so that “push” operations become “cons” and “pop” operations
become “head/tail”. Local variables are passed in a record.

A method executes by calling the local function for the first instruction, with method
parameters placed into local variables (as required by the Java bytecode semantics).

)RU�H[DPSOH��WKH�PHWKRG

LQW�DGG��LQW�[��^�ORDG�[��ELSXVK����LDGG��UHWXUQ��`

translates to

IXQ�DGG��WKLV��[��
��OHW�IXQ�IB��VW���Y���Y����
����IB��Y���VW���Y���Y���
��DQG�IXQ�IB��VW���Y���Y���� �IB�����VW���Y���Y���
��DQG�IXQ�IB��D��E��VW���Y���Y���� �IB���D�E���VW���Y���Y���
��DQG�IXQ�IB��Y��VW���Y���Y���� ��Y��«�
��LQ�IB��>@��^����WKLV������[`�

The encoding is simple and regular.

All kinds of control flow are easily handled. The method

VWDWLF�LQW�LVHTXDO�LQW�[��LQW�\��^
�����ORDG�������ORDG�������LIBFPSHT���
�����ELSXVK�������VWRUH�������JRWR���
�����ELSXVK�������VWRUH���
�����ORDG�������UHWXUQ��`

translates to

107

IXQ�LVHTXDO�[��\��
��OHW�IXQ�IB��VW���Y���Y���Y���� �IB��Y���VW���Y���Y���Y���
��DQG�IXQ�IB��VW���Y���Y���Y���� �IB��Y���VW���Y���Y���Y���
��DQG�IXQ�IB��Y���Y���VW��OV��
����LI�Y�� �Y��WKHQ�IB��VW��OV��HOVH�IB��VW��OV�
��DQG�IXQ�IB��VW��OV�� �IB�����VW��OV�
��DQG�IXQ�IB��D��VW���Y���Y���Y���� �IB��VW���Y���Y���D��
��DQG�IXQ�IB��VW��OV�� �IB��VW��OV�
��DQG�IXQ�IB��VW��OV�� �IB�����VW��OV�
��DQG�IXQ�IB��E��VW���Y���Y���Y���� �IB��VW���Y���Y���E��
��DQG�IXQ�IB��VW���Y���Y���Y���� �IB��Y���VW���Y���Y���Y���
��DQG�IXQ�IB��Y��VW�� ��Y��«�

These calls between instructions could be treated polymorphically. In theory some
accuracy might be gained because at control flow merge points, the state along each
incoming control flow edge could be given a different type, each an instance of the type of
the state at the destination instruction. In practice this increased accuracy has not proved
useful, and even with some obvious optimizations (e.g., only allow polymorphism for calls
to instructions representing control flow merge points), it has proved prohibitively
expensive. Therefore in practice SEMI treats these transfers monomorphically (making the
types of the actual parameters and results equal to the types of the formal parameters and
results, rather than instances of those types). However, in the description below, I use
polymorphic constraints for instruction transfers to show that they are sound.

However, even under monomorphism it is still the case that a stack location or local
variable can be given different types at different program points. For example, local
variable #2 is has a different type after it is assigned to the type it had before assignment.
This has the same effect as translating the program into Single Static Assignment form
before performing the analysis, but it arises naturally from the encoding.

6.3.9 Exception Handling
Exception handling is performed in a way similar to other control transfers. In each method,
every instruction which might throw an exception, or receive a propagated exception
(which is actually all instructions, because the virtual machine can throw an “internal error”
exception at any instruction), can transfer control to any applicable exception handlers
defined in the method. The translation does not specify when an exception is thrown; for a
given instruction, the choice of whether to throw an exception or continue normal execution
is always considered to be nondeterministic (unless the instruction is an unconditional
DWKURZ instruction). Control transfer to an exception handler puts the current exception
object onto the top of the working stack, as specified by the Java bytecode semantics.

Most methods do not have any explicit exception handlers. However, all methods must be
able to propagate thrown exceptions to the caller. Each instruction which can throw an
exception (or receive a propagated exception) can nondeterministically choose to return the
exception value immediately as the method result, thus propagating the exception. The
following code shows an example of such behavior:

108

IXQ�FDOO$OO���
��OHW��UHVXOW���H[Q��� �FDOO���
��LQ�LI�"�WKHQ��«��H[Q���HOVH
����OHW��UHVXOW���H[Q��� �FDOO��UHVXOW��
����LQ�LI�"�WKHQ��«��H[Q���HOVH
�������UHVXOW���«�

6.4 Initial Constraint Set
Consider a program P in the Micro Java Bytecode language, as defined in Section 3.2.2.

6.4.1 Constraint Variables
The set of initial constraints for P makes use of the following variables:

• SSF: the variable for the working stack on entry to instruction SF
The stack is a list, so its variable can have two components: “head”, representing the
top of the stack, and “tail”, representing the rest of the stack.

• LSF: the variable for the local variable file on entry to instruction SF
The local variables are indexed by number, so LSF has numbered components, one for
each local variable used.

• XSF: the variable for the exception thrown by the code starting at SF

• GSF: the variable for the global variables on entry to instruction SF
This variable has one component for each static field in the program.

• RSF: the variable for the value that the code at SF eventually returns from the method

• S�SF, L�SF: the variables for the state on leaving instruction SF

• NFODVV,': the variable representing the prototypical object of class FODVV,'

• MPHWKRG,PSO: the variable representing the type of the method PHWKRG,PSO

• TSF,ODEHO: variables used by the instruction at SF for internal purposes

• NFODVV,',PHWKRG,': the variable representing the type of inherited method PHWKRG,' in
class FODVV,'

• NFODVV,',ILHOG,': the variable representing the type of field ILHOG,' in class FODVV,'

• NILHOG,': the variable representing the type of static field ILHOG,'

• Err: the variable representing the exceptions which may be thrown spontaneously by
the virtual machine

• S�exn-SF�FODVV,': these variables represent the new stack on transfer to an exception han-
dler when exception FODVV,' is thrown at SF

6.4.2 Instance Labels
SEMI uses the following instance labels:

109

• SF-SF�: an instance representing the use of (transfer of control to) one instruction from
another.
SEMI treats each instruction as a function; transferring control from one instruction to
another corresponds a call to the destination instruction’s function, passing in the cur-
rent local variables, working stack elements and global variables as parameters. These
“functions” do not return until the entire method returns; the returned value is the result
of the method. The functions are treated as polymorphic, so different information can
be inferred for an instruction for each incoming control path.

• SF: an instance representing the use of a static method (when SF corresponds to an
LQYRNHVWDWLF instruction) or the creation of a new object (when SF corresponds to
a QHZ instruction).
A method can be thought of as a polymorphic function. Note that global variables are
treated as the fields of a “globals object” which is passed as a parameter to every such
function, so every such function is self-contained and has no references to any environ-
ment. A static call to a method is a direct invocation of the function, and so gets a new
polymorphic instance. Creation of an object can be thought of as cloning a prototype
object, and also gets a new polymorphic instance.

• FODVV,'-PHWKRG,': an instance representing the inheritance of a method implementa-
tion by a class.
Each prototype object for a class can be thought of as a record, with one slot for each
signature of the methods implemented by the class. The putative definition of the proto-
type assigns the function associated with each inherited method implementation to the
slot for its signature. Since one method implementation can be inherited into multiple
classes, each class which uses a method implementation gets a new polymorphic
instance of the method.

• err-SF: an instance representing the creation of a spontaneously thrown exception at a
particular program point.
This is similar to the instance induced when an object is created by QHZ.

• err-FODVV,': an instance representing the creation of a new object when a spontaneous
exception is thrown.
A spontaneous exception creates an object which has one of many possible classes. The
variable “Err” represents the type of an object which could be any one of these classes,
and therefore “Err” is an instance of the object prototype for each spontaneous excep-
tion class. Each of these instances needs a different label, err-FODVV,'.

6.4.3 Component Labels
I make use of the following component labels:

• param-L: a parameter to a method.

• globals: the global variables passed into a method.

• result: the result returned by a method.

• exn: the exception thrown by a method (essentially, an alternative result).

• L: a local variable index.

110

• ILHOG,': a field slot of an object.

• PHWKRG,': a method slot of an object.

• head: the head element of a stack, treated as a list.

• tail: the tail of a stack.

6.4.4 Program Constraints
The set of initial constraints assigned to an MJBC program is given as

InitialConstraints(P) =
({ IConstraints(SF) | SF ³ dom Instruction })

 ({ MInvocation(PHWKRG,PSO) | (PHWKRG,PSO, 0) ³ dom
Instruction })

 ({ MDispatch(FODVV,', PHWKRG,') | (FODVV,',
PHWKRG,') ³ dom Dispatch })

 ({ IFields(FODVV,') | FODVV,' ³ dom InitFields })
 ({ CatchConstraints(SF, FODVV,') | (SF, FODVV,') ³ dom

CatchBlockOffset })
 ({ { *�0DLQ���� EILHOG,' 1ILHOG,' } | ILHOG,' ³

dom InitStaticFields })
 ({ { Err�)err-SF XSF } | SF ³ dom Instruction })
 ({ { NFODVV,'�)err-FODVV,' Err } | FODVV,' ³

ErrorClassIDs })

This definition uses several functions:

• IConstraints(SF) is a partial function that assigns to each SF the initial constraints
induced by the instruction at SF. IConstraints is defined by the rules in Table 6-1.

• MInvocation computes the constraints needed to hook up the type of a method body P
to the types at the method definition.

• MDispatch computes the constraints needed to implant the type of the method imple-
mentation PHWKRG,' into the type of the prototype object for class FODVV,'.

MDispatch(FODVV,', PHWKRG,') =
{ MDispatch(FODVV,', PHWKRG,')�)FODVV,'�PHWKRG,'�1FODVV,',PHWKRG,'�

1FODVV,' EPHWKRG,' 1FODVV,',PHWKRG,' }

• IFields computes constraints ensuring that every object field has a type.

IFields(FODVV,') =
{ 1FODVV,' EILHOG,' 1FODVV,',ILHOG,' | ILHOG,' ³ dom InitFields(FODVV,') }

MInvocation P() MP Eparam-0 TP p0, MP Eparam-1 TP p1, MP Eglobals G P 0,(), ,{ }
MP Eexn X P 0,() MP Eresult R P 0,() L P 0,() E0 7P p0, L P 0,() E1 TP p1,, , ,{ }

=

111

Instruction(SF) IConstraints(SF)

DFRQVWBQXOO { S�SF Etail�6SF,�SSF+1 Ehead�TSF,v�`

 Succ(SF, SF+1, S�SF, LSF)

ELSXVK byte { S�SF Etail�6SF,�SSF+1 Ehead�TSF,v�`

 Succ(SF, SF+1, S�SF, LSF)

LDGG { 6SF Etail�TSF,t1, TSF,t1 Etail�TSF,t2, S�SF Etail TSF,t2,�
SSF+1 Ehead�TSF,v `

 Succ(SF, SF+1, S�SF, LSF)

ORDG index { LSF ELQGH[7SF�Y��S�SF Etail�6SF��S�SF Ehead�7SF�Y�`

 Succ(SF, SF+1, S�SF, LSF)

VWRUH index { 6SF Etail�S�SF, SSF Ehead�7SF�Y� L�SF ELQGH[7SF�Y�`
{ L�SF EL 7SF�L | L ³ LocalNames(SF) ¾ L � LQGH[}
{ LSF EL 7SF�L | L ³ LocalNames(SF) ¾ L � LQGH[}
Succ(SF, SF+1, S�SF, L�SF)

LIBFPSHT offset { 6SF Etail�S�SF `
 Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)
 Succ(SF, (CodeLocMethod(SF), RIIVHW), S�SF, LSF)

JRWR offset Succ(SF, (CodeLocMethod(SF), RIIVHW), SSF, LSF)

UHWXUQ { SSF Ehead�5SF�`

QHZ classID { S�SF Etail�6SF��SSF+1 Ehead�7SF�Y��NFODVV,'�)SF�7SF�Y�`

 Succ(SF, SF+1, S�SF, LSF)
a

JHWILHOG fieldID { 6SF Etail�TSF,t, 6SF Ehead�TSF,obj, TSF,obj EILHOG,'�TSF,v,
S�SF Ehead TSF,v, S�SF Etail TSF,t `

 Succ(SF, SF+1, S�SF, LSF)

SXWILHOG fieldID { 6SF Etail�TSF,t, 6SF Ehead�TSF,v,�TSF,t Etail�S�SF,
TSF,t Ehead TSF,obj, TSF,obj EILHOG,' TSF,v `
 Succ(SF, SF+1, S�SF, LSF)

JHWVWDWLF fieldID { GSF EILHOG,' 7SF�Y��S�SF Etail�6SF��S�SF Ehead�7SF�Y�`

 Succ(SF, SF+1, S�SF, LSF)

SXWVWDWLF fieldID { 6SF Etail�S�SF, SSF Ehead�7SF�Y� GSF EfieldID 7SF�Y�`

 Succ(SF, SF+1, S�SF, LSF)

LQYRNHYLUWXDO
methodID

{ 6SF Etail�TSF,t1, 6SF Ehead�TSF,v1,�TSF,t1 Etail�TSF,t2,
TSF,t1 Ehead TSF,v0, TSF,v0�EPHWKRG,'�7SF�P�

6�SF Etail�TSF,t2, 6�SF Ehead�TSF,r `
 MethodCall(7SF�P, TSF,v0, TSF,v1, GSF, XSF, 7SF�U)
 Succ(SF, SF+1, S�SF, LSF)

Table 6-1. Instruction Constraints

112

• CatchConstraints gives constraints capturing the control flow for exceptions of class
FODVV,' thrown at SF and caught in the method.

CatchConstraints(SF, FODVV,') =
Succ(SF, (CodeLocMethod(SF), CatchBlockOffset(SF, FODVV,')), S�exn-SF�FODVV,', LSF)
 { S�exn-SF�FODVV,' Ehead�;SF }

The last three sets of constraints are:

• Constraints ensuring that every static field has a type.

• Constraints expressing the possibility that an exception may be spontaneously thrown
from at any instruction.

• Constraints specifying that the spontaneously thrown exceptions are objects of the
classes found in the ErrorClassIDs.

The rules in Table 6-1 use the following functions:

• LocalNames computes the indices of the local variables used in PHWKRG. LocalNames is
used to make sure the values of all local variables are carried forward correctly when
one of them is overwritten by a VWRUH instruction.

• Succ computes the constraints that arise along control flow paths within a method,
when one instruction is a successor of another in the control flow graph. Succ treats the
transfer of control from one instruction to the next as if it were a function call, so that

LQYRNHVWDWLF
methodImpl

{ 6SF Etail�TSF,t1, 6SF Ehead�TSF,v1,�TSF,t1 Etail�TSF,t2,
TSF,t1 Ehead TSF,v0, MPHWKRG,PSO�)SF�7SF�P��

6�SF Etail�TSF,t2, 6�SF Ehead�TSF,r `
 MethodCall(7SF�P, TSF,v0, TSF,v1, GSF, XSF, 7SF�U)
 Succ(SF, SF+1, S�SF, LSF)

FKHFNFDVW classID Succ(SF, SF�1, SSF, LSF)

LQVWDQFHRI classID { 6SF Etail�TSF,t, S�SF Etail TSF,t,�SSF+1 Ehead�TSF,v `

 Succ(SF, SF+1, S�SF, LSF)

DWKURZ { SSF Ehead�;SF�`

a. The object’s type variable is plugged into SSF+1 instead of S�SF, because for the
proofs, we need the field and method components of the variable to appear at SSF+1.
The implementation instead has S�SF Ehead�7SF�Y��7KH�GLVFUHSDQF\�FDQ�SUREDEO\�EH�
FRUUHFWHG�E\�DGGLQJ�³SRVW�VWDWH´�H[SUHVVLRQV�WR�WKH�H[SUHVVLRQ�V\QWD[�DQG�H[WHQG�
LQJ�WKH�VRXQGQHVV�SURRI�WR�FRYHU�WKHP�

Instruction(SF) IConstraints(SF)

Table 6-1. Instruction Constraints

LocalNames PHWKRG()
LQGH[L. Instruction PHWKRG L,() ORDG �LQGH[VWRUH�LQGH[,{ }³$|{ }

=

113

the instruction at IURP performs a “tail call” to the instruction at WR to do the rest of the
computation for the current method. 6 and / are the types for the working stack and the
local variables respectively that are passed into WR.

• MethodCall computes the constraints needed to hook up a method call at a call site. 0
is the type for the method being called. 3� and 3� are the types of the parameters being
passed in. * is the type of the globals object being passed in. ; and 5 are the types of
the exception and normal result returned, respectively.

6.4.5 Query Constraints
Additional constraints must be added to the set & to support queries over arbitrary bytecode
expressions. These constraints depend on the queried expressions, and are detailed below
in Section 6.5.3.2.

6.4.6 Canonical Constraint Set
& is a canonical constraint set if

.

Given a closed constraint set 1,

/HPPD������/HW�D�FORVHG�FRQVWUDLQW�VHW�1�EH�JLYHQ��/HW�0�EH�D�PDS�IURP�YDULDEOHV�WR�

YDULDEOHV�VXFK�WKDW

0 selects one representative element from each equivalence class. Such a map exists for
any choice of N, because the closure of 1 implies the relation is an equivalence relation
in 1 (lacking only reflexivity, which I restore with the disjunction).

Let & be defined as:

�& replaces each variable in 1 with the representative of its equivalence class.) 7KHQ�&�LV�
WULYLDOO\�FDQRQLFDO��)XUWKHUPRUH��&�LV�FORVHG�

Proof: I prove the closure condition that implies .

Suppose . Then

Succ IURP WR 6 /, , ,()
SWR)IURP-WR �6 LWR)IURP-WR�/ GWR)IURP-WR �GIURP XWR)IURP-WR�XIURP, , ,{ }
RWR) IURP-WR�RIURP{ }

=

MethodCall 0 3� 3� * ; 5, , , , ,()
0 Eparam-0 3� 0 Eparam-1 3� 0 Eglobals * 0 Eexn�; 0 Eresult�5, , , ,{ }

=

X Y, . X @ Y{ } &² XÃ" Y=

X Y, . X @ Y{ } 1² X Y=¿ 0 X()À" 0 Y()=

 @

& 0 W() EF 0 X() W EF X{ } 1²|{ }

0 W())L 0 X() W)L X{ } 1²|{ }

0 W() @ 0 W() W dom 0³|{ }

=

W EF X W EF Y,{ } &² X @ Y{ } &²

W EF X W EF Y,{ } &²

114

. where

By definition of 0,

In either case of the disjunction,

By closure of N,

This gives

, i.e., and therefore

The other closure conditions follow similarly. n

The remainder of this chapter deals with canonical closed constraint sets. This eliminates
the need to explicitly deal with equivalence constraints.

6.4.7 Example
The Java code in Figure 6-6 would generate bytecode as shown in Table 6-2.

)RU�WKLV�SURJUDP��RQH�PLJKW�DVN�³FDQ�PDLQ¶V�UHVXOW�HTXDO�WKH�QHZ�;�REMHFW�LW�FUHDWHV"´�:H�
VKDOO�VHH�KRZ�WKLV�TXHVWLRQ�LV�DQVZHUHG�E\�FRPSXWLQJ�LQLWLDO�FRQVWUDLQWV��VKRZQ�LQ�Table 6-
2��DQG�WKHQ�ILQGLQJ�D�FORVHG�IRUP�

6.4.7.1 Initial Constraints
The constraints shown in Table 6-2 have been simplified from the real constraints in order
to make the example simultaneously tractable and interesting. In particular, all the
“successor instance” constraints have been replaced with equalities, which have then been
eliminated by substitution. All of the constraints within methods relating to the stack (S)
and local variable (L) variables have been solved and eliminated. All constraints relating to
global variables and exceptions are irrelevant and have been elided.

6.4.7.2 Finding a Closed Form
SEMI would close the constraint set by generating additional constraints, as follows:

The equality constraints within I give

^�0I�EUHVXOW�7I�S��`�

FODVV�;�^
�����������;�I�;�D�������^�UHWXUQ�WKLV��`
����VWDWLF�;�J�;�F��;�G��^�UHWXUQ�F�I�G���`
����VWDWLF�;�PDLQ�;�E����^�UHWXUQ�J�QHZ�;����E���`
`

Figure 6-6. A Simple Java Program

W$ � W�� X� Y�, , , W 0 W�()= X 0 X�()= W 0 W��()= Y 0 Y�()=¾ ¾ ¾

W� EF X� W�� EF Y�,{ } 1²

0 W�() 0 W��()= W� @ W��{ } 1² W� W��=¿Ã

W� EF X� W� EF Y�,{ } 1²

X� @ Y�{ } 1²

0 X�() 0 Y�()= X Y= X @ Y{ } &²

115

We propagate components of Mf to NX,f (using 0I�);�I�1;�I), getting

^�1;�I�ESDUDP���Y��1;�I�EUHVXOW�Y�`��IRU�VRPH�Y�ZKHUH�7I�S��);�I�Y��

Now we propagate NX,f and its components to the instance of CX in PDLQ (using
&;)�PDLQ����7�PDLQ����Y), yielding

{ 7�PDLQ����Y EI V ��V�ESDUDP���Y
��V�EUHVXOW�Y
 `��IRU�VRPH�V�DQG�Y�ZKHUH�NX,f�)�PDLQ����V�

DQG��Y)�PDLQ����Y
��

In other words, we know in PDLQ that the object’s I method aliases its first parameter and
result. Now we need to work on J. The constraints for J contain { 7J�S��EI�7�J����P��

7�J����P ESDUDP���7J�S���7�J����P�EUHVXOW�5�J����`��So inside J, we know that we pass S� into
S�’s I method, and the result of that method is returned from J. We do not assume
anything else about I here.

We propagate J’s constraints to PDLQ, obtaining

{ 7J�S��)�PDLQ����7�PDLQ����Y���5�J���)�PDLQ��� 5�PDLQ����`

From here we get

%\WHFRGH ,QGXFHG�,QLWLDO�&RQVWUDLQWV
FODVV�;�^ 0I�);�I�1;�I &;�EI�1;�I
��I�WKLV��S���^ 0I�ESDUDP���7I�S��

0I�EUHVXOW�5�I���

0I�ESDUDP���7I�S�

�� ����ORDG�WKLV�
�� ����UHWXUQ� 5�I���� �7I�S�

��`
��VWDWLF�J�S���
S���^

0J�ESDUDP���7J�S�
0J�EUHVXOW�5�J���

0J�ESDUDP���7J�S�

�� ����ORDG�S�
�� ����ORDG�S�

��
����
LQYRNHYLUWXDO�I�

7J�S��EI�7�J����P�

7�J����P�ESDUDP���7J�S�

7�J����P�ESDUDP���7J�S�

�� ����UHWXUQ� 7�J����P�EUHVXOW�5�J���
��`
��VWDWLF�
PDLQ�S���^

0PDLQ�ESDUDP���7PDLQ�S�� 0PDLQ�EUHVXOW�5�PDLQ���

�� ����QHZ�;� &;�)�PDLQ����7�PDLQ����Y
�� ����ORDG�S��

��
����LQYRNHVWDWLF�
J�

0J�)�PDLQ����7�PDLQ����P

7�PDLQ����P�ESDUDP���7PDLQ�S�

7�PDLQ����P�ESDUDP���7�PDLQ����Y

�� ����UHWXUQ� 7�PDLQ����P�EUHVXOW�5�PDLQ���
��`
`

Table 6-2. A Simple Bytecode Program and its Constraints

116

{ 7�PDLQ����Y�EI�X��X�ESDUDP���7�PDLQ����Y���X EUHVXOW�5�PDLQ����`��IRU�VRPH�X�ZKHUH�

7�J����P)�PDLQ��� X��

1RZ�7�PDLQ����Y�EI�X�DQG�7�PDLQ����Y�EI�V�UHTXLUH�XV�WR�VHW

{ }

,Q�RWKHU�ZRUGV��ZH�KDYH�³GLVFRYHUHG´�WKH�LPSOHPHQWDWLRQ�RI�I�WKDW�J�XVHV�

From the param-0 components of u and s, we get

{ , }

Thus

{ }.

%HFDXVH�WKH�UHVXOW�RI�QHZ�;�LQ�PDLQ�LV�DVVLJQHG�W\SH� ��WKH�FRQFOXVLRQ�LV�WKDW�WKH�

UHVXOW�RI�PDLQ�PD\�EH�WKH�QHZ�;�

6.5 Extracting the VPR Approximation
In this section, I consider a canonical closed constraint set &��ZLWK�DVVRFLDWHG�PDS�0�
PDSSLQJ�IURP�WKH�RULJLQDO�YDULDEOHV�WR�WKH�YDULDEOHV�RI�&��DQG�D�SDLU�RI�E\WHFRGH�H[SUHV�
VLRQV�H��DQG�H���DQG�VKRZ�KRZ�6(0,�GHFLGHV�ZKHWKHU�H��DQG�H��DUH�UHODWHG�LQ�WKH�935�
DSSUR[LPDWLRQ�

6.5.1 Overview
Below, I define a judgement �WKDW�UHODWHV�D�E\WHFRGH�H[SUHVVLRQ�H�LQ�VRPH�
FRQWH[W� �WR�D�6(0,�YDULDEOH�X with some “leftover context” ��ZKLFK�LV�D�VXIIL[�RI� ��$�
FRQWH[W�LV�D�VHTXHQFH�RI�LQVWDQFH�ODEHOV��)RU�ILUVW�RUGHU�FRGH��LW�FRUUHVSRQGV�WR�D�FDOO�VWDFN��
HDFK�ODEHO�QDPLQJ�D�PHWKRG�FDOO�VLWH�RU�DQ�LQVWUXFWLRQ�WUDQVLWLRQ��UHFDOO�WKDW�LQVWUXFWLRQ�
WUDQVLWLRQV�DUH�WUHDWHG�DV�WDLO�FDOOV��

The SEMI variable X is referred to as the ground type of the expression in the context. A
ground type is obtained by first ignoring the context and computing the base type t assigned
to the expression by SEMI, for example, the type variable assigned to a local variable. Then
we follow the chain of instances starting at W and labelled by the instance labels in the
context as far as possible, to obtain X, the “most specific” instance of t in context .

The “leftover context” �LV�WKH�VXIIL[�RI� �WKDW�ZDV�QRW�GHUHIHUHQFHG��LW�UHSUHVHQWV�WKH�
RXWHUPRVW�FRQWH[W�DW�ZKLFK�VRPH�LQVWDQFH�RI�W appears. For example, when X occurs as part
of the type of a global variable, the leftover context is empty because an instance of u will
occur at the top level.

The analysis concludes H����H��LI�DQG�RQO\�LI

The idea is that X is the type of a witness value that causes H��DQG�H��WR�EH�UHODWHG��7KH�
H[SUHVVLRQV�DUH�UHODWHG�LI�WKHUH�LV�VRPH�SODXVLEOH�W\SH�X�WKDW�LV�DQ�LQVWDQFH��LQ�DQ\�FRQWH[WV��
RI�ERWK�RI�WKH�EDVH�W\SHV�RI�H��DQG�H��

X @ V

v� @ T(main,0),v v� @ R(main,0)

R(main,0) @ T(main,0),v

T(main,0),v

H [,() X [�,()�
[[� [

[[

[� [

X [1 [2 [1� [2�, , , , . H1 [1,() X [1�,()� H2 [2,() X [2�,()�¾$

117

6.5.2 Relating Bytecode Expressions to Variables
7KH�LQIHUHQFH�UXOHV�LQ�)LJXUHV����������DQG�����GHILQH�MXGJHPHQWV�RI�WKH�IRUP�³ ´�
�WKH�³H[SUHVVLRQ�GHFRPSRVLWLRQ´�UHODWLRQ���³ ´��WKH�³FRPSRQHQW�HYDOXDWLRQ´�
UHODWLRQ���DQG�³ ´��WKH�³LQVWDQFH�HYDOXDWLRQ´�UHODWLRQ���7KHVH�MXGJHPHQWV�
DUH�FRPELQHG�LQ�)LJXUH �����WR�IRUP�WKH�MXGJHPHQW�³ ´��,Q�WKLV�VHFWLRQ�,�
SURYH�D�QXPEHU�RI�VLPSOH�VWUXFWXUDO�SURSHUWLHV�RI�WKHVH�UHODWLRQV�

7KH�H[SUHVVLRQ�GHFRPSRVLWLRQ�UHODWLRQ�PDSV�D�E\WHFRGH�H[SUHVVLRQ�H�WR�D�UHSUHVHQWDWLRQ�RI�
LWV�EDVH�W\SH��JLYHQ�DV�D�EDVLF�W\SH�YDULDEOH�X��RQH�RI�6SF��*SF��;SF��RU�/SF��IRU�VRPH�SF���
DQG�D�VHTXHQFH�RI�FRPSRQHQW�ODEHOV� �WKDW�PXVW�EH�IROORZHG�IURP�X�WR�UHDFK�WKH�EDVH�W\SH�
IRU�H��7KH�FRPSRQHQW�HYDOXDWLRQ�UHODWLRQ�WKHQ�WDNHV�X�DQG�GHUHIHUHQFHV�WKH�FKDLQ�RI�
FRPSRQHQW�ODEHOV�WR�UHDFK�D�YDULDEOH� �FRUUHVSRQGLQJ�WR�WKH�DFWXDO�EDVH�W\SH�RI�H��)LQDOO\�
WKH�LQVWDQFH�HYDOXDWLRQ�UHODWLRQ�ILQGV�WKH�PRVW�VSHFLILF�LQVWDQFH�RI� �LQ�FRQWH[W� �

7KH�UHVW�RI�WKLV�VXEVHFWLRQ�SURYHV�VHYHUDO�IRUPDO�SURSHUWLHV�RI�WKHVH�HYDOXDWLRQ�UHODWLRQV��
0DQ\�RI�WKHP�DUH�JHQHUDOL]DWLRQV�RI�WKH�FORVXUH�SURSHUWLHV�RI�FRQVWUDLQW�VHWV�

Figure 6-7. Rules defining the mapping from bytecode expressions to constraint variables and components

Figure 6-8. Rules defining evaluation through components

H X FÆ Ö�
X FÆ Ö X��

X� [,() Y [�,()�
H [,() Y [�,()�

SF�VWDFN�0 SSF head e::Æ Ö�
--

SF�H[Q XSF eÆ Ö�
--

 SF�VWDFN� Q 1–() SSF F�Æ Ö� Q 0>

SF�VWDFN�Q SSF tail F�::Æ Ö�

SF�ORFDO�Q LSF Q e::Æ Ö�
--

SF�staticField GSF VWDWLF)LHOG e::Æ Ö�
--

SF�exp X F1 ... FN e:: :: ::Æ Ö�

SF�exp�field X F1 ... FN ILHOG e:: :: :: ::Æ Ö�
--

X eÆ Ö X�

X EF X��{ } &² X�� FÆ Ö X��

X F F::Æ Ö X��
--

F

X�
X� [�

118

Lemma 6-2. Existence property. Instance evaluation is total:

Proof: The proof is by induction on the length of . The base case is trivial with
and . For the induction step, suppose ; either or

. In the former case, the result is trivial with , . In the
latter case, the induction hypothesis gives for some , and the result
follows. n

Lemma 6-3. Uniqueness properties. Each of the relations is a (partial) function.

Proof: It is clear that exactly one rule from Figure 6-7 applies for each bytecode expression
H. Therefore:

Exactly one rule from Figure 6-8 applies for each . (Note that if and
 then by closure of &, and hence .) Therefore:

Exactly one rule from Figure 6-9 applies for each . (Note that if and
 then by closure of &, and hence .) Therefore:

3XWWLQJ�WKHVH�WRJHWKHU�JLYHV�

n

Lemma 6-4. Component transitivity property. Component evaluation respects
concatenation of component lists.

Figure 6-9. Rules defining evaluation through instances

Figure 6-10. Rule assigning a ground variable to an expression in a given context

X)L X��{ } &² X�� [,() X� [�,()�

X L [::,() X� [�,()�
--

X�. X)L X� &´"

X L [::,() X L [::,()�
--

X e,() X e,()�

H X FÆ Ö� 0 X() FÆ Ö X�� X� [,() Y [�,()�
H [,() Y [�,()�

X [, . Y [�, . X [,() Y [�,()�$"

[[e=
Y X= [L [��::= X�. X)L X� &´"

X�. X)L X�{ } &²$ Y X= [� [=
X� [��,() Y [�,()� Y [�

H X X� F F�, , , , . H X FÆ Ö� H X� F�Æ Ö�¾ XÃ" X� F¾ F�= =

X FÆ Ö X EF X�{ } &²

X EF X��{ } &² X� @ X��{ } &² X� X��=

X F Y Y�, , , . X FÆ Ö Y� X FÆ Ö Y��¾ YÃ" Y�=

X [,() X)L X�{ } &²

X)L X��{ } &² X� @ X��{ } &² X� X��=

X [Y Y�, , , . X [,() Y [�,()� X [,() Y� [��,()�¾ Y Y�= [� [��=¾Ã"

H [Y Y�, , , . H [,() Y [�,()� H [,() Y� [��,()�¾ Y Y�= [� [��=¾Ã"

119

Proof: The proof is by induction on the length of . The base case is trivial, with
. For the induction step, suppose . In the forward direction, we have

. This requires By the induction
hypothesis, . But then , as required.

In the reverse direction, we have . This requires
. By the induction hypothesis, . Then

, as required. n

Lemma 6-5. Instance suffix property. In instance evaluation, the leftover context is a
suffix of the initial context. When the difference between those contexts is itself used as
the context for evaluation, the resulting leftover context is empty.

Proof: The proof is by induction on the length of . For the base case , the result is
trivial, with and . For the induction step, suppose . Then either

 or . In the former case, the result is trivial with
, and . In the latter case, we have . The induction

hypothesis gives . Then
, as required (substituting for). n

Lemma 6-6. Component propagation property. Components propagate along instance
chains.

This property can be illustrated using the following diagram. In all the illustrations repre-
senting constraint sets, nodes represent variables. A dashed edge represents an instance
constraint, or (as in this case) a sequence of instance constraints. A solid edge represents a
component constraint, or a sequence of component constraints. The edges are labelled with
their instance or component labels; the nodes are labelled with the names of the variables.

Any closed set containing the left-hand component must also contain the right-hand
component.

Proof: The proof is by induction on the length of . For the base case , the result is
trivial, with and . For the induction step, suppose . Then for
some , and . By closure of &, there exists such that

X F F� Y, , , . X F F�ªÆ Ö Y� W. X FÆ Ö W� W F�Æ Ö Y�¾$À"

F F e=
W X= F F F��::=
X F F��:: F�ªÆ Ö Y� X EF X�{ } & X� F�� F�ªÆ Ö Y�¾²

W. X� F��Æ Ö W� W F�Æ Ö Y�¾$ X F F��::Æ Ö W�

W. X F F��::Æ Ö W� W F�Æ Ö Y�¾$

X EF X�{ } & X� F��Æ Ö W�¾² X� F�� F�ªÆ Ö Y�

X F F��:: F�ªÆ Ö Y�

X [X� [�, , , . X [,() X� [�,()� Y \, . [\ [�ª= X \,() Y e,()�¾$()Ã"

[[e=
Y X= \ e= [L [��::=

X��. X)L X�� &´" X��. X)L X��{ } &²$

Y X= [� [= \ e= X�� [��,() X� [�,()�

Y \, . [�� \ [�ª= X�� \,() Y e,()�¾$

[L \::() [�ª= X L \::,() Y e,()�¾ L \:: \

X [X� Y F, , , , . X [,() Y e,()� X EF X�{ } &²¾
Y�. X� [,() Y� e,()� Y EF Y�{ } &²¾$()

Ã"

X Y

F F

X� Y�

[

[[e=
Y X= Y� X�= [L [��::=

W X)L W{ } &² W [��,() Y e,()� W�

120

 and . By the induction hypothesis,
. It follows immediately that ,

as required. n

Lemma 6-7. Instance transitivity property.

This property can be illustrated using the following diagram:

The small indicates that the instance chains converge at Y, in both cases yielding the
same leftover instances .

Proof: The proof is by induction on the length of . For the base case , the result is
trivial, with . For the induction step, suppose . Then for some ,

 and . By the induction hypothesis,
. Suppose ; then

 and hence , as required. On the other hand,
suppose ; then as required. n

Lemma 6-8. Instance convergence property. Suppose that are given such
that . Suppose also that , , and

, for some given . Then .

This can be illustrated as follows:

Note how the instance evaluations of and in contexts and terminate at Y with
leftover instances , but evaluation of and in the same contexts may “go past” Y’s
corresponding component. (This can happen because may have some instances that Y
does not have. Conceptually, Y could be the type of something that is local to a function,
but which has a component that escapes to a wider context.) The important result here
is that even though the evaluations of and do not necessarily yield , they do yield
the same result.

W EF W�{ } &² X�)L W�{ } &²

Y�. W� [��,() Y� e,()� Y EF Y�{ } &²¾$ X� L [��::,() Y� e,()�

X [X�, , . X [,() X� e,()� [� Y Z, , . X [[�ª,() Y Z,()� X� [�,() Y Z,()�À"()Ã"

X

X�
[�

Y
[

[[�ª
Z

Z

Z

[[e=
X X�= [L [��::= W

X)L W{ } &² W [��,() X� e,()�

[� Y Z, , . W [�� [�ª,() Y Z,()� X� [�,() Y Z,()�À" X� [�,() Y Z,()�

W [�� [�ª,() Y Z,()� X L [��:: [�ª,() Y Z,()�

W [�� [�ª,() Y Z,()� X� [�,() Y Z,()�

X X� V V� F, , , ,

X EF V X� EF V�,{ } &² X [,() Y Z,()� X� [�,() Y Z,()�

V [,() W Z�,()� Y Z W Z�, , , V� [�,() W Z�,()�

X

F

F

V

V�

X�

Y
[

[�

[
W

[�

F

Z

Y�
Z�

X X� [[�

Z V V�

Y�

Y�

V V� Y�

121

Proof: The proof is as follows: By Lemma 6-5 (instance suffix), there exist such that
 and . By Lemma 6-6

(component propagation), . Then by Lemma 6-7
(instance transitivity), . This implies

.

By another application of component propagation,
. Because C is closed and canonical,

(being matching components of). Thus . Invoking instance transitivity,
. But and therefore

, i.e. as required. n

Lemma 6-9. Generalized instance convergence property.

Suppose that are given such that . Suppose also that
, , and for some given . Then
.

Proof: The proof is by induction on the length of . The base case is vacuous with
and . For the induction step, suppose . Then

. By the existence property
(Lemma 6-2), . Applying Lemma 6-8 (instance convergence),

. Then applying the induction hypothesis, . n

Lemma 6-10. Instance propagation property.

Proof: The proof is by induction on the length of . It is trivially true for , with
 and . Suppose . Then for some we have and

. By closure of &, . The induction hypothesis yields
. Then as required. n

\ \�,

[\ Zª= X \,() Y e,()�¾ [� \� Zª= X� \�,() Y e,()�¾

Y�. V \,() Y� e,()� Y EF Y�{ } &²¾$

U], . V \ Zª,() U],()� Y� Z,() U],()�À"

Y� Z,() W Z�,()�

Y��. V� \�,() Y�� e,()� Y EF Y��{ } &²¾$ Y�� Y�=
Y V� \�,() Y� e,()�

U], . V� \� Zª,() U],()� Y� Z,() U],()�À" Y� Z,() W Z�,()�

V� \� Zª,() W Z�,()� V� [�,() W Z�,()�

X X� V V� F, , , , X FÆ Ö V� X� FÆ Ö V��¾

X [,() Y Z,()� X� [�,() Y Z,()� V [,() W Z�,()� Y Z W Z�, , ,

V� [�,() W Z�,()�

X

V

V�

X�

Y
[

[�

[
W

[�

Z

Y�
Z�

F

F

F

F X V=
X� V�= F F F�::=

U U�, . X EF U X� EF U�,{ } &² U F�Æ Ö V� U� F�Æ Ö V��¾ ¾$

Y� Z��, . U [,() Y� Z��,()�$

U� [�,() Y� Z��,()� V� [�,() W Z�,()�

X F Y X�, , , . X FÆ Ö Y� X)L X�{ } &²¾ Y�. X� FÆ Ö Y�� Y) L Y�{ } &²¾$()Ã"

X X�

Y�

L

F

Y

F
L

F F e=
Y X= Y� X�= F F F�::= X�� X EF X��{ } &²

X�� F�Æ Ö Y� W. X��)L W X� EF W,{ } &²$

Y�. W F�Æ Ö Y�� Y)L Y�{ } &²¾$ X� FÆ Ö Y��

122

6.5.3 Constraints to Support Query Expressions

6.5.3.1 Inadequacy of Program Constraints
The analysis requires variables to be associated with arbitrary bytecode expressions. This
may not be possible using only the constraints that are derived from the program.

For example, consider the following method P:

VWDWLF�YRLG�P�)RR�I��^�6\VWHP�RXW�SULQWOQ�³+HOOR�.LWW\´���`

Suppose some tool requires SEMI to decide whether
P���I�ILHOG$ � P���I�ILHOG% is in the VPR. (The syntax “P��” denotes
bytecode offset 0 in method P.) The method P does not mention I, and therefore there are
no constraints naming the components of I in the context of P. Therefore, although one can
show , does not evaluate to
any ground variable. If this situation were to stand, then the analysis would incorrectly
deduce that the two expressions are not related, when in fact they may be.

6.5.3.2 Query Constraints
To solve this problem, SEMI takes as input a set 4 of bytecode expressions required for the
query, and decides only for those in 4. For each expression H in 4, constraints
are added to the constraint set &, ensuring that for any context , holds
for some , .

Formally, for each H in 4, compute X and such that .
Choose fresh variables , and add the constraints

 to 1. Then . (If
, then set and the result holds.) Thus we have, for any context , and for all

H in 4, and for some . From above, .
Therefore, in summary:

6.6 Implementing the Ajax Interface
The previous section specifies the approximation to the value-point relation computed by
SEMI. This section describes an efficient implementation of the Ajax interface using this
approximation. I describe how the Ajax interface is implemented in terms of a given closed
constraint set; SEMI’s algorithm for computing a closed constraint set is described in the
next chapter.

Recall that the Ajax API specifies the following parameters to the analysis:

• A type D of intermediate data to be propagated

• A type R of tool target data

• An associative, commutative, idempotent binary “merge” operator DM : D � D � D
with identity element DE

P���I�ILHOG$ LP�� 0 ILHOG$::Æ Ö� LP�� 0 ILHOG$::Æ Ö

H1 H2� HL
[H [,() X� [�,()�

X� [�

F1 ... FN, , H X F1 ... FN e:: :: ::Æ Ö�

Y1 ... YN, ,

X EF1
 Y1 Y1 EF2

 Y2 ... YN 1– EFN
 YN, , ,{ } 0 X() F1 ... FN e:: :: ::Æ Ö 0 YN()�

N 0= YN X= [

H X FÆ Ö� X FÆ Ö Y� X F Y, , [. W [�, . Y [,() W [�,()�$"

H 4 . [" . W [�, . H [,() W [�,()�$³"

123

• A set S of source value-points from which data will be propagated

• A set T of target value-points to which data will be propagated

• An initial assignment of intermediate data to source value-points DI : S � D

• A map from target expressions to tool target data TR : T � R

The analysis computes:

This is computed efficiently using a graph, similar to the method used by RTA
(Section 5.3).

Note that the set of bytecode expressions Q used above in Section 6.5.3.2 can be taken
simply as the union of S and T.

Multiple queries are treated separately. The intermediate data computations described
below are local to each query.

6.6.1 The Graph
SEMI constructs a propagation graph with nodes

and edges

Lemma 6-11. Path invariant. SEMI relates if and only if there is a path from
In-u to Out-v where� �� �� ��DQG� �IRU�VRPH� �� ��

�� �� �� .

Intuitively, the two base types for the expressions have a common instance type if and only
if there is a path from one base type to the other in the propagation graph (which is essen-
tially two copies of the instance graph pasted together).

Proof: Suppose that SEMI relates . Then

From the uniqueness properties of the relations, we have and
. (The existence of �� �� �� �� �� �IROORZV�IURP�WKH�DGGHG�TXHU\�

FRQVWUDLQWV��DV�GLVFXVVHG�DERYH�LQ�Section 6.4.5�) It follows that there is a path in the graph
from In-X to In-W and from Out-W to Out-Y. There is an edge from In-W to Out-W. Therefore,
there is a path from In-X to Out-Y.

Conversely, suppose there is a path from In-X to Out-Y. There must exist an edge in the path
connecting to for some t and . All such edges are of the form ,

lt 7³ . '0 '6 s() s 6³ s t� ¾|{ }

31 In-t t Variables &()³|{ } Out-t t Variables &()³|{ }=

3(In-X In-Y,() L. X)L Y{ } &²$|{ }

Out-Y Out-X,() L. X)L Y{ } &²$|{ }

In-W Out-W,() t Variables &()³|{ }

=

H1 H2�

H1 X� FÆ Ö� X� FÆ Ö X� H2 Y� GÆ Ö� Y� GÆ Ö Y� X Y

X� Y� F G

H1 H2�

W [1 [2 [1� [2�, , , , . H1 [1,() W [1�,()� H2 [2,() W [2�,()�¾$

X [1,() W [1�,()�

Y [2,() W [2�,()� X Y X� Y� F G

In-W Out-W� W� In-W Out-W,()

124

therefore . Furthermore there is a path from In-u to In-t; this path passes only through
In nodes (because there are no edges from any Out node back to an In node). This implies
that for some sequence of instances , . Similarly there is path from Out-
W to Out-Y and for some , . Therefore

 and SEMI will conclude . n

6.6.2 Computing Analysis Results
The results are computed efficiently over the graph using almost exactly the same
algorithm as for RTA (Section 5.3.2). The only difference is the way in which expressions
are mapped to nodes in the graph.

The assignment A over graph nodes is computed iteratively as follows:

The algorithm terminates when . The result of the analysis is then:

6.6.3 Incrementality
The algorithm for computing the closed constraint set is incremental, in the sense that
adding new constraints to the initial set (e.g., in response to changes in the input program)
will cause new constraints to be added to the closed result set. This process is discussed
further in Chapter 7.

This means that new edges and nodes are added to an existing propagation graph. The
results are updated incrementally in response to changes in the graph and in the analysis
parameters, in much the same way as the RTA implementation operates (Section 5.3.5).

Because incremental extensions to the initial constraints are supported, there is actually no
need to know the set 4 of query expressions in advance. Whenever a new query expression
is encountered, it is added to 4 and everything is updated appropriately.

6.7 Proving Soundness

6.7.1 Overview

6.7.1.1 Strategy
Suppose a tagged trace 7� ��X0��«��XQ!�LV�JLYHQ�

In Section 6.7.2 below, we define a function Creation(Y) mapping each tagged value Y
occurring in the trace to a pair . The idea is that the first occurrence of Y is in state XL,
and can be obtained by evaluating in that state.

In Section 6.7.4 we define a function Context(L), mapping each state index L to a context
associated with state XL. This context can be thought of as identifying, for each method in
the call stack, which of the polymorphic instances of the method is active. The definition

W� W=

[1 X [1,() W e,()�

[2 Y [2,() W e,()�

H1 [1,() W e,()� H2 [2,() W e,()�¾ s t�

$0 y() '0 '6 s() s 6³ X F X�, , . V X� FÆ Ö� X� FÆ Ö X� \ In-X=¾ ¾$()¾|{ }=
$n 1+ y() '0 $n p() p y,() 3(³|{ } $n y(){ }()=

$n 1+ y() $n y()=

G F A MW() W T³ .TR W() G= W:MW¾$|{ }[],() G range TR³|{ }

L H�,()

H�

125

of the Context function requires an auxiliary CallerState function, defined in Section 6.7.3.
CallerState(N) finds the state at which the “current method” executing in state XN was
invoked.

Section 6.7.5 proves the following conformance lemma:

The idea is that given an expression evaluating to a value in a particular state, we can look
back to where the value was created and determine the expression’s ground type in terms
of that creation state.

Soundness is a corollary of this lemma. By definition, two expressions related by the VPR
must give the same value when evaluated in some pair of states. Applying the conformance
lemma twice, once for each expression in its associated state, we show that the ground types
of the expressions are both equal to the ground type of the value, and therefore equal to each
other. Thus we can be sure that SEMI relates the two expressions.

Formally, suppose where . Then by definition there�LV�D�WDJJHG�WUDFH�7�
DQG�VWDWHV�XL�DQG�XM�LQ�7�VXFK�WKDW� �DQG� �IRU�VRPH�WDJJHG�Y.

Choose , such that and , such that
 (they must exist according to Section 6.5.3.2). Then by the

conformance lemma,

In Section 6.7.2.1 below, I show that Creation is a function — i.e., and .
Therefore and (Lemma 6-3). Thus the analysis concludes .

6.7.1.2 Note: Unique Justification for Transitions
Many of the proofs perform a case analysis of a transition . This depends on the
fact that, given two states related in this way, there is always exactly one inference rule
justifying the transition.

To see that this is so consider the mode fields of the states and . There are four
possibilities:

“Exception return” is the only applicable rule.

“Exception catch” is the only applicable rule.

“Spontaneous exception throw” is the only applicable rule.

The applicable rule is uniquely determined by the value of
.

L H Y X [�, , , , . X L H,() YÄ H Context L(),() X [�,()�¾

L� H�, . Creation Y() L� H�,()= L� L� H� Context L�(),() X [�,()�¾ ¾$

Ã"

H1 H2� H1 H2, 4³

X L H1,() YÄ X M H2,() YÄ

X1 [1� H1 Context L(),() X1 [1�,()� X2 [2�

H2 Context M(),() X2 [2�,()�

L� H�, . Creation Y() L� H�,()= L� L� H� Context L�(),() X1 [1�,()�¾ ¾$

L�� H��, . Creation Y() L�� H��,()= L�� M� H�� Context L��(),() X2 [2�,()�¾ ¾$

L� L��= H� H��=
X1 X2= [1� [2�= H1 H2�

X L X L 1+ã

X L X L 1+

Mode X L() Mode X L 1+()

THROWING THROWING

THROWING RUNNING

RUNNING THROWING

RUNNING RUNNING

Instruction PC X L()()

126

6.7.2 The Creation Function
The creation function is defined by the rules given in Figure 6-11��,�GHPRQVWUDWH�WZR�
LPSRUWDQW�SURSHUWLHV��WKDW�LW�LV�D�IXQFWLRQ��DQG�WKDW�LW�LV�GHILQHG�IRU�DOO�WDJJHG�YDOXHV�WKDW�

DSSHDU�LQ�WKH�WUDFH�

6.7.2.1 “Creation” Is a Function
Lemma 6-12. For some arbitrary Y, suppose that and

. We show that and .

Proof: From the definition of the Creation function, and .

If , then H must be of the form and of the form
. Then ,

hence by the fact that InitialTag is defined to be a bijection.

If but , then , and then , since
. this fact is easily observed from the transition rules.

But given that , for each rule that can justify , there is a
constraint that . Therefore this situation is impossible. Similar
reasoning excludes with .

Consider and . Then , but
, therefore
 for all and . Therefore and

, i.e., .

Now consider the transition . If it is justified by one of the rules for
DFRQVWBQXOO, ELSXVK, LDGG, or LQVWDQFHRI, then .

If the transition is justified by the rule for QHZ, and , then one of or must be of
the form . Without loss of generality, suppose

. Then there are two cases, or
 where . Consulting the transition rule, the

former case is impossible because violates the condition
. The latter case is impossible because

violates the condition that WDJV is a bijection.

The same reasoning applies to the case in which the transition is justified by the rule for
spontaneous exception throws, except that and
or . n

6.7.3 The CallerState Function

6.7.3.1 Definition
The CallerState function determines at which state in a trace a method invocation began:

Creation Y() L H,()=
Creation Y() L� H�,()= L L�= H H�=

X L H,() YÄ X L� H�,() YÄ

L L� 0= = Main 0,()�VWDWLF)LHOG H�

Main 0,()�VWDWLF)LHOG� Tag Y() InitalTag VWDWLF)LHOG() InitalTag VWDWLF)LHOG�()= =
VWDWLF)LHOG VWDWLF)LHOG�=

L 0= L� 0> Tag Y() Used X 0()³ Tag Y() Used X L� 1–()³

L L�, . L L�� Used X L() Used X L�()²Ã"

Creation Y() L� H�,()= X L� 1– X L�ã

Tag Y() Used X L� 1–()´

L� 0= L 0>

L 0> L� 0> Tag Y() Used X L 1–()´ Tag Y() Used X L� 1–()´¾

Tag Y() Used X L()³ Tag Y() Used X L�()³¾

Tag Y() Used X M()³ Tag Y() Used X L�()³¾ M L� M L�� L� 1– L<

L 1– L�< L L�=

X L 1– X Lã

H H� PC X L()�VWDFN��= =

H H�� H H�

PC X L()�VWDFN���ILHOG
H PC X L()�VWDFN���ILHOG= H� PC X L()�VWDFN��=
H� PC X L()�VWDFN���ILHOG�= ILHOG ILHOG��

Tag Y() W WDJV ILHOG()= =
W range WDJV´ Tag Y() WDJV ILHOG() WDJV ILHOG�()= =

H PC X L()�H[Q�ILHOG= H� PC X L()�H[Q=
H� PC X L()�H[Q�ILHOG�=

CallerState N() max L L N IUDPH . MStack X N() IUDPH MStack X L()::=$¾<|{ }=

127

Figure 6-11. Rules defining the Creation function

X L 1– X Lã justified by rule for DFRQVWBQXOO

X L PC X L()�VWDFN��,() YÄ

Creation Y() L PC X L()�VWDFN��,()=

X L 1– X Lã justified by rule for ELSXVK byte

X L PC X L()�VWDFN��,() YÄ

Creation Y() L PC X L()�VWDFN��,()=

X L 1– X Lã justified by rule for LDGG

X L PC X L()�VWDFN��,() YÄ

Creation Y() L PC X L()�VWDFN��,()=
--

X L 1– X Lã justified by rule for QHZ classID

X L PC X L()�VWDFN��,() YÄ

Creation Y() L PC X L()�VWDFN��,()=

X L 1– X Lã justified by rule for QHZ classID

X L PC X L()�VWDFN��� ILHOG,() YÄ

Creation Y() L PC X L()�VWDFN���ILHOG,()=

X L 1– X Lã justified by rule for LQVWDQFHRI classID

X L PC X L()�VWDFN��,() YÄ

Creation Y() L PC X L()�VWDFN��,()=
--

X L 1– X Lã justified by rule for spontaneous exception throw

X L PC X L()�H[Q,() YÄ

Creation Y() L PC X L()�H[Q,()=

128

It computes the state number L which called into the method active at state N, by finding the
most recent state at which the call stack was one element shorter than the current call stack.

This function is used below to define the Context function. Here we prove some “obvious”
but useful properties of the CallerState function that are required below. These properties
are really invariants of the MJBC semantics ensuring that the call stack and the program
counter behave in a disciplined way.

6.7.3.2 Scope of Definition
CallerState is defined whenever the run time stack is nonempty (i.e., the current method
was called by some other method).

Lemma 6-13. The function CallerState is defined for all N such that .

Proof: To prove this, it suffices to prove that the set

is nonempty if . This is shown by induction on N.

For , .

For , consider the transition . If the transition was not justified by a rule
for method invocation, method return, or exception return, then

 and the result follows from the induction hypothesis.

If the transition was a method return or exception return, then
 for some I, and therefore . Applying

the induction hypothesis, is defined. Therefore there exists an M such that

Hence . Then, using the induction hypothesis again, if
, then

If the transition was a method invocation, then for some I ,
. Then the set

Figure 6-11. Rules defining the Creation function

X L 1– X Lã justified by rule for spontaneous exception throw

X L PC X L()�H[Q�ILHOG,() YÄ

Creation Y() L PC X L()�H[Q�ILHOG,()=

X 0 Main 0,()�VWDWLF)LHOG,() YÄ

Creation Y() 0 Main 0,()�VWDWLF)LHOG,()=
--

MStack X N() e�

L L N IUDPH. MStack X N() IUDPH MStack X L()::=$¾<|{ }

MStack X N() e�

N 0= MStack X N() e=

N 0> X N 1– X Nã

MStack X N 1–() MStack X N()=

MStack X N 1–() I MStack X N()::= MStack X N 1–() e�

CallerState N 1–()

M N 1– IUDPH . MStack X N 1–() IUDPH MStack X M()::=$¾<

MStack X M() MStack X N()=
MStack X N() MStack X M()= e�

L L M IUDPH. MStack X M() IUDPH MStack X L()::=$¾<|{ } «�

L L N IUDPH. MStack X N() IUDPH MStack X L()::=$¾<|{ } «�

MStack X N() I MStack X N 1–()::=

129

 contains and is
nonempty. n

6.7.3.3 Nested Call Stack
The call stack for the current state is a suffix of the call stack in every state during the
lifetime of the current method invocation. In other words, the call stack may grow
downward due to this method calling into another method, but the current activation record
and the records above it on the stack are not popped or modified. We only need to prove
this for states between the current state and the invocation of the current method.

Lemma 6-14. If then
.

Proof: The proof is by induction on .

For , the result is trivial.

Now consider where the induction hypothesis holds for . That is,
assume and . Consider the transition

.

If the transition is not justified by a rule for method invocation, method return, or exception
return, then and it follows immediately that

.

If the transition is a method return or exception return, then
 for some I, and again the result follows immediately.

If the transition is a method invocation, then for some I, .
By the induction hypothesis, either or is a
proper suffix of . In the latter case, .
In the former case, one obtains . But then L is an element of
the set and , contradicting
the definition of F. n

6.7.3.4 Preservation of Caller State
The activation record on top of the call stack reflects the state just before we began the
current method invocation.

Lemma 6-15. If and then
 for some value of .

Proof: By the nested call stack lemma, . By the
definition of F, . Therefore is a
proper suffix of , implying that the transition must be a method
call. The method call rules guarantee that where

. Since and
 is a suffix of , it follows that .n

L L N IUDPH. MStack X N() IUDPH MStack X L()::=$¾<|{ } N 1–

F CallerState N()=
L. F L N�< MStack X N() is a suffix of MStack X L()()Ã"

N L–

N L– 0=

N L– S= N L– S 1–=
F L N< < MStack X N() is a suffix of MStack X L 1+()

X L X L 1+ã

MStack X L() MStack X L 1+()=
MStack X N() is a suffix of MStack X L()

MStack X L() I MStack X L 1+()::=

MStack X L 1+() I MStack X L()::=
MStack X L 1+() MStack X N()= MStack X N()

MStack X L 1+() MStack X N() is a suffix of MStack X L()
MStack X N() I MStack X L()::=

L� L� N IUDPH. MStack X N() IUDPH MStack X L�()::=$¾<|{ } L F>

F CallerState N()= MStack X N() pc 6 / , ,() - ::=
X F pc: pc wstack: 6 locals: / mstack: - r, , , ,[]= r

MStack X N() is a suffix of MStack X F 1+()
IUDPH. MStack X N() IUDPH MStack X F()::=$ MStack X F()

MStack X F 1+() X F X F 1+ã

MStack X F 1+() pc 6 / , ,() - ::=
X F pc: pc wstack: 6 locals: / mstack: - r, , , ,[]= MStack X N() IUDPH - ::=
MStack X N() pc 6 / , ,() - :: MStack X N() pc 6 / , ,() - ::=

130

6.7.3.5 Method Entry Correspondence
On beginning the current method invocation, the program counter was set to bytecode
offset zero of the current method. The important thing to prove is that the method
invocation actually invoked the same method as the current method.

Lemma 6-16. If then .

Proof: The proof is by induction on . Since , the base case is . Let
. Then . Furthermore the

transition is a method call, and therefore , as required.

Now suppose and consider the transition . Whenever
 then the transition rule also requires

, and then the result follows
from the induction hypothesis.

If the transition was a method invocation, then for some I
. But that implies , which

only occurs in the base case.

If the transition was a method return or exception return, then
 for some , where for

exceptional returns and for normal returns. Let . By preser-
vation of caller state (Lemma 6-15), and

. This also gives
. Furthermore, by the nested call

stack lemma (Lemma 6-14),

Therefore

But and therefore

That is, . Now we appeal to the induction hypothesis
applied to . n

6.7.4 The Context Function
The Context function maps a state index to a list of instance labels, identifying exactly
which polymorphic instance of each currently active method was invoked.

F CallerState N()= PC X F 1+() CodeLocMethod PC X N()() 0,()=

N F– N F> N F 1+=
P RIIVHW,() PC X F 1+()= CodeLocMethod PC X N()() P=

X F X F 1+ã RIIVHW 0=

F CallerState N()= X N 1– X Nã

MStack X N 1–() MStack X N()=
CodeLocMethod PC X N 1–()() CodeLocMethod PC X N()()=

MStack X N() I MStack X N 1–()::= F CallerState N() N 1–= =

MStack X N 1–() PC X N() [– 6 / , ,() MStack X N()::= 6 / , [0=
[1= G CallerState N 1–()=

PC X G() PC X N() [–=
MStack X G() MStack X N()=
CodeLocMethod PC X G()() CodeLocMethod PC X N()()=

L. G L N 1–�< MStack X N() is a suffix of MStack X L()Ã"

CallerState N() max L L N IUDPH . MStack X N() IUDPH MStack X L()::=$¾<|{ }

max L L G IUDPH. MStack X N() IUDPH MStack X L()::=$¾�|{ }

=

=

MStack X G() MStack X N()=

CallerState N() max L L G IUDPH. MStack X N() IUDPH MStack X L()::=$¾<|{ }=

CallerState N() CallerState G() F= =
G

131

6.7.4.1 Definition of the Context Function
The Context function is defined inductively as follows:

For , Context(L) depends on the form of the transition .

Case: The transition is justified by the rule for LQYRNHVWDWLF.

Case: The transition is justified by the rule for LQYRNHYLUWXDO.

Then is of the form , and
. Let and

. Now consider the transition . If it is
justified by the rule for QHZ, set

Otherwise it is justified by the rule for spontaneous exception throws, since that is the only
other creating rule which adds a mapping for to . Set

Case: The transition is justified by the rule for UHWXUQ.

 is well-defined because must be nonempty for the
UHWXUQ to execute successfully.

Case: The transition is justified by the rule for exceptional returns.

The reason for the asymmetry between normal and exceptional returns is that a normal
return transfers control to the instruction following the method invocation, but an excep-
tional return does not.

Case: The transition is justified by a rule for exception throws (either an execution of
DWKURZ or a spontaneous exception throw)..

Exception throw transitions simply change the state from RUNNING to THROWING and do
not themselves transfer control.

Case: All other transitions induce the following rule:

Context 0() e=

L 0> X L 1– X Lã

Context L() PC X L 1–() Context L 1–()::=

X L 1– pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - heap: + r, , , , ,[]

Instruction pc() LQYRNHYLUWXDO�PHWKRG,'= L� H,() Creation Y0()=
FODVV,' HeapObjClass + Val Y0()()()= X L� 1– X L�ã

Context L() FODVV,'-PHWKRG,' PC X L� 1–() Context L�():: ::=

Val Y0() +

Context L() FODVV,'-PHWKRG,' err-FODVV,' err-PC X L� 1–() Context L�():: :: ::=

Context L() PC X L() 1–()-PC X L() Context CallerState L 1–()()::=

CallerState L 1–() MStack X L 1–()

Context L() Context CallerState L 1–()()=

Context L() Context L 1–()=

Context L() PC X L 1–()-PC X L() Context L 1–()::=

132

6.7.4.2 Preservation of Return Types
This lemma proves that the return type Rpc and the type Xpc of any thrown exception at
some instruction pc map correctly to the actual return type and exception type of the
method.

Lemma 6-17. The return type and thrown exception type inferred for a method
correspond to the return type and exception type actually used in all contexts.

Proof: The proof is by induction on .

The fact implies . Therefore the base case is . Set
, and the result is trivial, noting by the method entry corre-

spondence lemma (Lemma 6-16).

Now consider the transition .

Case: The transition is an exception throw. Then and
. Also implying

. We apply the induction hypothesis to get

This is equivalent to the desired result.

Case: The transition is the normal execution of an instruction other than LQYRNHVWDWLF,
LQYRNHYLUWXDO or UHWXUQ. Then let and ; then

, and
. Also implying

. We apply the induction hypothesis to get

The executed instruction induces the constraints Succ(SF, , V, O) for some V and O.
Therefore . Set .
Then and

as required.

Case: The transition was a method invocation. Then for some I
. But that implies , which

only occurs in the base case, so this case cannot occur.

L P F, , . P CodeLocMethod PC X L()()= F CallerState L()=¾

Z . Context L() Z Context F 1+()ª=
0 RPC X L()() Z,() 0 R P 0,()() e,()� 0 XPC X L()() Z,() 0 X P 0,()() e,()�¾ ¾

$

Ã"

L F–

F CallerState L()= F L< L F 1+=
Z e= PC X F 1+() P 0,()=

X L 1– X Lã

PC X L 1–() PC X L()=
Context L() Context L 1–()= MStack X L 1–() MStack X L()=
F CallerState L() CallerState L 1–()= =

Z . Context L 1–() Z Context F 1+()ª=
0 RPC X L 1–()() Z,() 0 R P 0,()() e,()� 0 XPC X L 1–()() Z,() 0 X P 0,()() e,()�¾ ¾

$

SF PC X L 1–()= SF� PC X L()=
CodeLocMethod SF() CodeLocMethod SF�()=
Context L() SF-SF� Context L 1–()::= MStack SF() MStack SF�()=
F CallerState L() CallerState L 1–()= =

Z�. Context L 1–() Z� Context F 1+()ª=
0 RSF() Z�,() 0 R P 0,()() e,()� 0 XSF() Z�,() 0 X P 0,()() e,()�¾ ¾

$

SF�

0 RSF�())SF-SF� 0 RSF() 0 XSF�())SF-SF� 0 XSF(),{ } &² Z SF-SF� Z�::=
Context L() Z Context F 1+()ª=

0 RSF�() Z,() 0 R P 0,()() e,()� 0 XSF�() Z,() 0 X P 0,()() e,()�¾

MStack X L() I MStack X L 1–()::= F CallerState L() L 1–= =

133

Case: The transition was a method return or exceptional return. Then
 for some , where for

exceptional returns and for normal returns. Let . By preser-
vation of caller state, and . This also
gives . Furthermore, by the
nested call stack lemma, .
Therefore . Now we appeal to the induction
hypothesis applied to , yielding

If the transition was an exceptional return, then and
; the required result is obtained by setting .

Otherwise the transition was a normal return. Then and
. The method invocation

instruction at induces the constraints Succ(, , V, O) for some V and O.
Therefore

Set . Then

n

6.7.5 Proving the Conformance Lemma
Lemma 6-18. To reprise Section 6.7.1.1, the conformance lemma states:

The proof is by induction on L. The induction hypothesis is strengthened to note that, in
every state, the ground type for the global variable record is the type given to it at the
beginning of Main:

The base case is proved in Section 6.7.5.1. It is trivial.

For the induction step, I assume the hypothesis is true for and prove it true for
.

MStack X L 1–() PC X L() [– 6 / , ,() MStack X L()::= 6 / , [0=
[1= G CallerState L 1–()=

PC X G() PC X L() [–= MStack X G() MStack X L()=
P CodeLocMethod PC X L()() CodeLocMethod PC X G()()= =

L�. G L� N 1–�< MStack X L() is a suffix of MStack X L�()Ã"

F CallerState L() CallerState G()= =
G

Z�. Context G() Z� Context F 1+()ª=
0 RPC X GL()() Z�,() 0 R P 0,()() e,()� 0 XPC X G()() Z�,() 0 X P 0,()() e,()�¾ ¾

$

PC X G() PC X L()=
Context L() Context G()= Z Z�=

PC X G() PC X L() 1–=
Context L() PC X L() 1–()-PC X L() Context CallerState L 1–()()::=

G PC X G() PC X L()

0 RPC X L()()) PC X L() 1–()-PC X L() 0 RPC X L() 1–()
0 XPC X L()()) PC X L() 1–()-PC X L() 0 XPC X L() 1–()

,{

} &²

Z PC X L() 1–()-PC X L() Z�::=

Context L() Z Context F 1+()ª=
0 RPC X L()() Z,() 0 R P 0,()() e,()� 0 XPC X L()() Z,() 0 X P 0,()() e,()�¾

L H Y X [�, , , , . X L H,() YÄ H Context L(),() X [,()�¾

L� H�, . Creation Y() L� H�,()= L� L� H� Context L�(),() X [,()�¾ ¾$

Ã"

L. 0 GPC X L()() Context L(),() 0 G Main 0,()() e,()�

H Y X [�, , , . X L H,() YÄ H Context L(),() X [,()�¾

L� H�, . Creation Y() L� H�,()= L� L� H� Context L�(),() X [,()�¾ ¾$

Ã"¾

(

)

"

L N�

L N 1+=

134

The basic strategy to prove the induction result is to show that most transitions
“preserve types” by extending the context with an instance label (corresponding to method
call or intra-method control flow) and by making the types of local variables (and stack
locations) at the old code location appropriate instances of the types of local variables (and
stack locations) at the new code location. This ensures that the ground type obtained for e
evaluated in is the same as when it is evaluated in , and we can
appeal to the induction hypothesis to show that it is the correct .

This is not possible for all transitions, because most transitions change the program state,
and therefore for some expressions H the value obtained by evaluating H in the new state
differs from the result of evaluating H in the old state. Typically these cases are proved by
showing that the initial constraints require the type of H to be related to the type of some
other expression , where in the old state evaluates to the same value as H in the new
state. This allows us to again appeal to the induction hypothesis.

Some other cases require different techniques. For example, transitions that create new
values prove the result by appealing directly to the definition of Creation, without resorting
to the induction hypothesis. As another example, the return instruction truncates the
Context for the current state back to the Context of the caller; this case requires the “preser-
vation of return types” Lemma 6-17 from above, as well as other machinery.

In Section 6.7.5.3 we prove the first part of the induction result itself:
. The proof is relatively simple because it

does not depend on and only requires a case analysis of the transition .
Furthermore, only a few transitions modify global variables.

Section 6.7.5.4 proves the rest of the induction result for expressions H of the form
, assuming it holds for . This step also requires case

analysis of . Again, most of the cases are easy because most transitions do not
modify object fields.

Section 6.7.5.5 proves the result for expressions of the form .
Again, only a few transitions modify static fields.

The simple expressions referring to stack and local variables require the most work, and are
handled in Section 6.7.5.6 and following sections. For these expressions, we perform a case
analysis of the form of the transition and then break down the expression type within each
transition, according to the manner in which stack and local variables are modified by the
transition. (Almost every transition modifies the working stack or local variables in some
way.)

The proof is simplified by codifying the strategy described above (which relates the
expression H to some expression , where in the old state evaluates to the same value
as H in the new state) using a “reduction function” (Section 6.7.5.7) mapping H to . The
proof also uses a “succession lemma” (Section 6.7.5.8), which captures the invariants

X N X N 1+ã

Context N 1+() Context N()
X [,()

H� H�

0 GPC X N 1+()() Context L(),() 0 G Main 0,()() e,()�

H X N X N 1+ã

PC X N 1+()�H[S�I PC X N 1+()�H[S
X N X N 1+ã

PC X N 1+()�VWDWLF)LHOG

H� H�

H�

135

induced by the use of the Succ function in the initial constraints. Nevertheless for each
transition, some case analysis of the form of H is required.

One key supporting lemma is proved in the context of the induction hypothesis: Lemma 6-
19 in Section 6.7.5.2. This lemma shows that at the invocation of a virtual method, the type
of the method body actually invoked matches the type assigned to the method at the
invocation site, in the sense that they have the same set of ground types. (It is not neces-
sarily the case that one is an instance of the other.) This is used to show that virtual method
calls and returns preserve types. This lemma follows by showing that the type assigned to
the object at the invocation site matches the object’s type at its creation, which is a conse-
quence of the induction hypothesis.

6.7.5.1 Base Case
The base case is . Suppose . By the definition of a trace,

X0 = >mode��RUNNING��pc��(Main, 0)��wstack��e, locals: [], mstack: e, heap: [],
globals: InitStaticFields, used: range InitialTags]

In this state, expressions of the form SF�VWDFN�Q and SF�ORFDO�Q do not evaluate to
anything. Also, since the heap is empty, expressions of the form SF�H[S�ILHOG do not
evaluate to anything. Therefore H must be of the form (Main, 0):VWDWLF)LHOG. Therefore

, i.e. and ; noting that and
 gives the induction result.

6.7.5.2 Preservation of Virtual Call Types
Lemma 6-19. The types inferred for a virtual method implementation match up with the
types inferred at each call site.

Proof: Then is of the form .
Let and . We then let

, where
.

Let . Consider the transition . The transition adds a mapping
for in the heap, therefore the transition is either an execution of QHZ or a spontaneous
exception throw. In Lemma 6-20 below, we show that in either case, for some

, , , and

L 0= X 0 H,() YÄ

Creation Y() 0 H,()= L� 0 L= = H� H= PC X 0() Main 0,()=
Context 0() e=

L PHWKRG,' PHWKRG,PSO F Y Y� X [, , , , , , , .

X L X L 1+ã L N�¾ Instruction PC X L()() LQYRNHYLUWXDO�PHWKRG,'=

PC X L 1+() PHWKRG,PSO 0,()= Mode X L() Mode X L 1+() RUNNING= =

0 TPC X L() v0,() PHWKRG,' F e:: ::Æ Ö Y� 0 MPHWKRG,PSO() EF Y�{ } &²

¾

¾ ¾

¾ ¾

Y Context L(),() X [,()� Y� Context L 1+(),() X [,()�À()

Ã

"

X L pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - heap: + r, , , , ,[]

L� H�,() Creation Y0()= FODVV,' HeapObjClass + Val Y0()()()=
pc� PC X L 1+() PHWKRG,PSO 0,()= =
PHWKRG,PSO Dispatch FODVV,' methodID,()=

SF�� PC X L� 1–()= X L� 1– X L�ã

Y0

Z V V� V�� F, , , , H� V� FÆ Ö� V� FÆ Ö V��� V�� PHWKRG,' F e:: ::Æ Ö V� Y� Z,() V e,()�

136

where . This means that the created object, in the context
in which it is created, has a type s for the given component c of the object’s method
methodID, and s is an instance of the type we observe for the method’s component in
state .

The constraints for the LQYRNHYLUWXDO instruction include

{ 6SF Etail�TSF,t1,�6SF Ehead TSF,v1,�TSF,t1 Etail�TSF,t2, TSF,t1 Ehead TSF,v0,
TSF,v0 EPHWKRG,'�7SF�P�� �`

:H�KDYH� ��� ��DQG�

��1RZ��IRU�VRPH� ��

�DQG�WKHQ� ��%\�WKH�

LQGXFWLRQ�K\SRWKHVLV�� ��L�H�� ��,W�LV�

YDOLG�WR�DSSO\�WKH�LQGXFWLRQ�K\SRWKHVHV�EHFDXVH� .

Now assume . $SSO\LQJ�WKH�JHQHUDOL]HG�LQVWDQFH�FRQYHUJHQFH�
SURSHUW\�ZLWK� �JLYHV� ��7KHQ��UHFDOOLQJ�

��ZH�KDYH� ��L�H��

�

Conversely, assuming , i.e. ,
and knowing , the instance transitivity property shows

. Applying the generalized instance convergence property with
 gives . n

Lemma 6-20. Sub-lemma of Lemma 6-19: For some : ,
, and where

.

Proof: The proof is by a case analysis of the transition , introduced above.

Case: The transition is justified by the rule for QHZ. Then
and

The constraints for QHZ give

{ S�SF�� Etail�6SF����SSF��+1 Ehead�7SF���Y��NFODVV,')SF�� 7SF���Y `

Succ(SF��, SF��+1, S�SF��, LSF��)

We also have the initial constraints

{ MPHWKRG,PSO)FODVV,'�PHWKRG,'�1FODVV,',PHWKRG,'��1FODVV,' EPHWKRG,' 1FODVV,',PHWKRG,' }

Because has a mapping in the heap, (the other expressions
created by QHZ do not have heap mappings.). Now

 and .

Context L 1+() Z Context L�()ª=

Y�

X L 1+

TSF m, Eglobals GSF

X N SF�VWDFN��,() Y0Ä SF�VWDFN�� SSF tail head e:: ::,()�

0 SSF() tail head e:: ::,() 0 TSF v0,()� X� [�,

0 TSF v0,() Context L(),() X� [�,()� SF�VWDFN�� Context L(),() X� [�,()�

H� Context L�(),() X� [�,()� V�� Context L�(),() X� [�,()�

L N�

Y Context L(),() X [,()�

F PHWKRG,' F e:: ::= V Context L�(),() X [,()�

Y� Z,() V e,()� Y� Z Context L�()ª,() X [,()�

Y� Context L 1+(),() X [,()�

Y� Context L 1+(),() X [,()� Y� Z Context L�()ª,() X [,()�

Y� Z,() V e,()�

V Context L�(),() X [,()�

F PHWKRG,' F e:: ::= Y Context L(),() X [,()�

Z V V� V�� F, , , , H� V� FÆ Ö�

V� FÆ Ö V��� V�� PHWKRG,' F e:: ::Æ Ö V� Y� Z,() V e,()�

Context L 1+() Z Context L�()ª=

X L� 1– X L�ã

X L� 1– X L�ã PC X L�() SF�� 1+=
Context L 1+() FODVV,'-PHWKRG,' SF�� Context L�():: ::=

Y0 H� PC X L�()�VWDFN��=

PC X L�()�VWDFN�� SSF�� 1+ head e::Æ Ö� 0 SSF�� 1+() head e::Æ Ö TSF�� v,�

137

From the program constraints and the assumption , we get
 for some , where

.

So we set , , , and
.

Case: The transition is justified by the rule for spontaneous exception throws.
Then and

.

The relevant initial constraints are

{ Err�)err-SF�� XSF��, NFODVV,')err-FODVV,' Err, MDispatch(FODVV,', PHWKRG,'))FODVV,'�

PHWKRG,'�1FODVV,',PHWKRG,'��1FODVV,' EPHWKRG,' 1FODVV,',PHWKRG,' }

Thus for
some , where .

Because has a mapping in the heap, (the other expressions created
do not have heap mappings.). Now and .

From the program constraints and the assumption , we get
 for some , where

.

So we set , , and
. n

6.7.5.3 Globals Hypothesis
Here we prove the global variables “ground type” invariant that we used to strengthen the
induction hypothesis

Lemma 6-21. Consider the cases governing the form of . For each case we
show

.

Proof: The proof is by a case analysis of the form of the transition .

Case: The transition is justified by the rule for LQYRNHVWDWLF.

Then

Let . By the induction hypothesis,
. The LQYRNHVWDWLF instruction induces the

constraints in 1:

0 MPHWKRG,PSO() EF Y�{ } &²

Y� FODVV,'-PHWKRG,' SF�� e:: ::,() V e,()� V

0 TSF�� v,() PHWKRG,' F e:: ::Æ Ö V�

Z FODVV,'-PHWKRG,' SF�� e:: ::= F head e::= V� SSF�� 1+=
V�� TSF�� v,=

X L� 1– X L�ã

PC X L�() SF��=

Context L 1+() FODVV,'-PHWKRG,' err-FODVV,' err-SF�� Context L�():: :: ::=

0 GPC X N 1+()() FODVV,'-PHWKRG,' err-FODVV,' err-PC X L� 1–() e:: :: ::,() V e,()�

V 0 XSF��() PHWKRG,' globals e:: ::Æ Ö V�

Y0 H� PC X L�()�H[Q=
PC X L�()�H[Q XSF�� eÆ Ö� XSF�� eÆ Ö XSF���

0 MPHWKRG,PSO() EF Y�{ } &²

Y� FODVV,'-PHWKRG,' err-FODVV,' err-PC X L� 1–() e:: :: ::,() V e,()� V

XSF�� PHWKRG,' F e:: ::Æ Ö V�

Z FODVV,'-PHWKRG,' err-FODVV,' err-PC X L� 1–() e:: :: ::= F e=
V� V�� XSF��= =

Context N 1+()

0 GPC X N 1+()() Context N 1+(),() 0 G Main 0,()() e,()�

X N X N 1+ã

X N X N 1+ã

Context N 1+() PC X N() Context N()::=

PHWKRG,PSO CodeLocMethod PC X N 1+()()=
0 GPC X N()() Context N(),() G Main 0,() e,()�

138

{ , ,
 `

%\�FORVXUH�RI�&�� �

Therefore

.

Case: The transition is justified by the rule for LQYRNHYLUWXDO.

Choose PHWKRG,' such that , and
PHWKRG,PSO such that . Set , ,

 and . The intial constraints contain

Also, by the induction hypothesis, .

Now we appeal to the preservation of virtual call types (Lemma 6-19) to obtain

Case: The transition is justified by the rule for UHWXUQ.

Then

Let . The rule for UHWXUQ implies , using an
application of Lemma 6-15 regarding preservation of caller state.

By the induction hypothesis, . The
method invocation instructions both induce the constraints Succ(SF, SF+1, S�SF, LSF), which
include

Therefore

Case: The transition is justified by the rule for exceptional returns.

Then

Let . The rule for exceptional returns implies . But
then ; applying the induction hypothesis gives

This is identical to the required result, taking the equalities into account.

Case: The transition is justified by a rule for exception throws.

MPHWKRG,PSO)PC X M() TPC X N() m, MPHWKRG,PSO Eglobals GPC X N 1+()

TPC X N() m, Eglobals GPC X N()

0 GPC X N 1+()())PC X M() 0 GPC X N()(){ } &²

0 GPC X N 1+()() Context N 1+(),() 0 G Main 0,()() e,()�

Instruction PC X N()() LQYRNHYLUWXDO�PHWKRG,'=
PC X N 1+() PHWKRG,PSO 0,()= F globals= L N=

Y� 0 GPC X N 1+()()= Y 0 GPC X N()()=

MPHWKRG,PSO Eglobals GPC X N 1+() TPC X N() m, Eglobals GPC X N() TPC X N() v0, EPHWKRG,' GPC X N(), ,{ }

0 GPC X N()() Context N(),() 0 G Main 0,()() e,()�

0 GPC X N 1+()() Context N 1+(),() 0 G Main 0,()() e,()�

Context N 1+() PC X N 1+() 1–()-PC X N 1+() Context CallerState N()()::=

SF PC X CallerState N()()= PC X N 1+() SF 1+=

0 GSF() Context CallerState N()(),() 0 G Main 0,()() e,()�

GSF 1+) PC X N 1+() 1–()-PC X N 1+() GSF{ }

0 GPC X N 1+()() Context N 1+(),() 0 G Main 0,()() e,()�

Context N 1+() Context CallerState N()()=

SF PC X CallerState N()()= PC X N 1+() SF=
0 GPC X N 1+()() 0 GPC X CallerState N()()()=

0 GPC X CallerState N()()() Context CallerState N()(),() 0 G Main 0,()() e,()�

139

Then

The two exception throw transition rules guarantee . Therefore
applying the induction hypothesis gives

Case: All other transitions induce the following rule:

Let and .

By the induction hypothesis, . The rules for
these transitions all require the execution of an instruction which induces the constraints
Succ(SF, SF�, S�SF, LSF) — except for the rule for exception catch. The exception catch rule
requires where

 and for some . But then the
constraints Succ(SF, SF�, S�exn-SF�FODVV,', LSF) are in the initial constraints. In either case,

and therefore

n

6.7.5.4 Field Dereferences
Now we prove Lemma 6-18 for expressions H of the form .

The rules for expression evaluation require that for some value of UHI,
 and . Let S

be defined as

Note that because is empty, and . Therefore
. Inspection of the tagged transition rules

shows that there are three rules that could change the mapping for from state
 to state : the rule for QHZ, the rule for spontaneous exception throws, and the rule

for SXWILHOG. In each case, the changed field(s) require

.

Let .

We can use the induction hypothesis to obtain

Context N 1+() Context N()=

PC X N() PC X N 1+()=

0 GPC X N()() Context N(),() 0 G Main 0,()() e,()�

Context N 1+() PC X N()-PC X N 1+() Context N()::=

SF PC X N()= SF� PC X N 1+()=

0 GSF() Context N(),() 0 G Main 0,()() e,()�

handler CatchBlockOffset method offset,() HeapObjClass + ref()(),()=
SF� method handler,()= SF method RIIVHW,()= RIIVHW

0 GSF�())SF-SF� 0 GSF(){ } &²

0 GSF�() Context N 1+(),() 0 G Main 0,()() e,()�

PC X N 1+()�H[S�I

X N 1+ PC X N 1+()�H[S,() UHIÄ Y HeapObjFields Heap X N 1+() Val UHI()()() I()=

S min L Y HeapObjFields Heap X L() Val UHI()()() I()=|{ }=

S 0> Heap X 0() S N 1+�

Y HeapObjFields Heap X S 1–() Val UHI()()() I()�

Val UHI()
X S 1– X S

I dom InitFields HeapObjClass + Val ref()()()()³

SF PC X S 1–()=

Y� X�, . X N 1+ PC X N 1+()�H[S,() Y�Ä PC X N 1+()�H[S Context N 1+(),() X� [�,()�¾

L� H�, . Creation Y�() L� H�,()= L� N 1+� H� Context L�(),() X� [�,()�¾ ¾$

Ã"

140

We have . Also,
 requires, for some ,

 where ,
, and .

By Lemma 6-6, there exists such that and , i.e.
. By Lemma 6-2, there exist , such that

. Thus and
 for some .

The rest of the induction hypothesis is proven using a case split on the form of the transition
.

Case: is justified by the rule for QHZ FODVV,', where
.

Then and , giving
 and

by definition.

It remains to be shown that . From above, we
have for some .
But because Creation is a function (Lemma 6-12), we have and

, giving . Therefore
for some V, and .

The QHZ instruction induces these constraints in 1:

{ S�SF Etail�6SF�� �� �`

 { 7SF�Y EI 7SF�I } Succ(SF, SF+1, S�SF, LSF)

These imply , which in turn imply
. Clearly

Thus all that remains to be proved is .

The facts and
 give and

. Above we showed ,
, , and . Now

we can invoke the instance convergence property (Lemma 6-8) to obtain the required

Case: is justified by the rule for SXWILHOG I.

X N 1+ PC X N 1+()�H[S,() UHIÄ

PC X N 1+()�H[S�I Context N 1+(),() X [,()� W F W�, ,

PC X N 1+()�H[S�I W F I e::()ªÆ Ö� PC X N 1+()�H[S W FÆ Ö�

0 W() F I e::()ªÆ Ö W�� W� Context N 1+(),() X [,()�

W�� 0 W() FÆ Ö W��� W�� I e::Æ Ö W��

W�� EI W�{ } &² X�� [��

W�� Context N 1+(),() X�� [��,()� PC X N 1+()�H[S X�� [��,()�

Creation UHI() L� H�,()= L� N 1+� H� Context L�(),() X�� [��,()�¾ ¾ L� H�,

X S 1– X Sã

X S 1– X Sã

FODVV,' HeapObjClass + Val ref()()()=

X S PC X S()�VWDFN��,() UHIÄ X S PC X S()�VWDFN���I,() YÄ

Creation Y() S PC X S()�VWDFN���I,()= Creation UHI() S PC X S()�VWDFN��,()=

PC X S()�VWDFN���I Context S(),() X [,()�

Creation UHI() L� H�,()= L� N 1+� H� Context L�(),() X�� [��,()�¾ ¾ L� H�,

L� S=
H� PC X S()�VWDFN��= PC X S()�VWDFN�� Context S(),() X�� [��,()�

0 SSF 1+() Ehead V{ } &² V Context S(),() X�� [��,()�

SSF 1+ Ehead TSF v, NFODVV,')SF TSF v,

SSF 1+ Ehead TSF v, TSF v, EI TSF I,,{ } 1²

0 SSF 1+() Ehead 0 TSF v,() 0 TSF v,() EI 0 TSF I,(),{ } &²

PC X S()�VWDFN���I SSF 1+ head I e:: ::Æ Ö�

0 SSF 1+() head I e:: ::Æ Ö 0 TSF I,()�

0 TSF I,() Context S(),() X [,()�

0 SSF 1+() Ehead V{ } &²

0 SSF 1+() Ehead 0 TSF v,() 0 TSF v,() EI 0 TSF I,(),{ } &² V 0 TSF v,()=
V EI 0 TSF I,(){ } &² V Context S(),() X�� [��,()�

W� Context N 1+(),() X [,()� W�� Context N 1+(),() X�� [��,()� W�� EI W�{ } &²

0 TSF I,() Context S(),() X [,()�

X S 1– X Sã

141

Then and . We
show that ; the main result then follows
immediately by appealing to the induction hypothesis.

The SXWILHOG instruction induces these constraints in 1:

{ 6SF Etail�TSF,t, 6SF Ehead�TSF,v,�TSF,t Etail�S�SF, TSF,t Ehead TSF,obj, TSF,obj EI TSF,v `
Succ(SF, SF+1, S�SF, LSF)

Clearly then, and
. Therefore for some , , we have

, and
. By the induction hypothesis,

. But then
and , and indeed , .

Let . Then and .
From the preamble to this section (6.7.5.4), ,

, and . The instance convergence property
gives . The SXWILHOG constraints show

 and . Putting these
together gives

Case: is justified by the rule for spontaneous exception throw.

Then and , giving
 and by

definition.

It remains to be shown that . From above, we have
 for some . But

because Creation is a function (Lemma 6-12), we have and ,
giving . Therefore

.

The initial constraints require of 1:

{ Err�)err-SF WSF, WSF�)exn-SF XSF } { NFODVV,'�)err-FODVV,' Err }

{ 1FODVV,' EI 1FODVV,',I }

Therefore for some some , . Clearly
and . Thus all that remains to be proved is .

To recap, I have , ,
, , and . Now

X S 1– PC X S 1–()�VWDFN��,() UHIÄ X S 1– PC X S 1–()�VWDFN��,() YÄ

PC X S 1–()�VWDFN�� Context S 1–(),() X [,()�

PC X S 1–()�VWDFN�� SSF tail head e:: ::Æ Ö�

0 SSF() tail head e:: ::Æ Ö 0 TSF obj,()� U]

0 TSF obj,() Context S 1–(),() U],()�

PC X S 1–()�VWDFN�� Context S 1–(),() U],()�

L�� H��, . Creation UHI() L�� H��,()= L�� L� H�� Context L��(),() U],()�¾ ¾$ L�� L�=
H�� H�= U X��=] [��=

V 0 TSF obj,()= V EI 0 TSF v,(){ } &² V Context S 1–(),() X�� [��,()�

W� Context N 1+(),() X [,()�

W�� Context N 1+(),() X�� [��,()� W�� EI W�{ } &²

0 TSF v,() Context S 1–(),() X [,()�

PC X S 1–()�VWDFN�� SSF head e::Æ Ö� 0 SSF() head e::Æ Ö 0 TSF v,()�

PC X S 1–()�VWDFN�� X [,()�

X S 1– X Sã

X S PC X S()�H[Q,() UHIÄ X S PC X S()�H[Q�I,() YÄ

Creation Y() S PC X S()�H[Q�I,()= Creation UHI() S PC X S()�H[Q,()=

PC X S()�H[Q�I Context S(),() X [,()�

Creation UHI() L� H�,()= L� N 1+� H� Context L�(),() X�� [��,()�¾ ¾ L� H�,

L� S= H� PC X S()�H[Q=
PC X S()�H[Q Context S(),() X�� [��,()�

0 WSF() Context S(),() X�� [��,()�

V� 0 WSF() EI V�{ } &² PC X S()�H[Q�I WSF I e::Æ Ö�

0 WSF() I e::Æ Ö V�� V� Context S(),() X [,()�

0 WSF() EI V�{ } &² 0 WSF() Context S(),() X�� [��,()�

W� Context N 1+(),() X [,()� W�� Context N 1+(),() X�� [��,()� W�� EI W�{ } &²

142

I can invoke the instance convergence property (Lemma 6-8) to obtain
, as required.

6.7.5.5 Static Field Expressions
Suppose H is of the form . Then the rules for expression evaluation
require . We also have the assumption

, implying for some ,
, ,

and .

We have already proven that . Then
by the component propagation property,

This implies and .

Let S be defined as

Clearly .

If then, by the definition of Creation and the initial state ,
. Now

,
 and ; therefore, as required,

Suppose . Then . The only transition which can
change the mapping of is the execution of a SXWVWDWLF VWDWLF)LHOG instruction. The
rule for that instruction requires for some .
Therefore .

This instruction induces the constraints

{ 6SF Etail�S�SF, SSF Ehead�7SF�Y� GSF EfieldID 7SF�Y�`

7KHUHIRUH� �DQG� �

$SSO\LQJ�WKH�LQGXFWLRQ�K\SRWKHVLV�JLYHV� �
Then applying the component propagation property with

 gives

Therefore . Combining the above gives .
Now we appeal to the induction hypothesis at to directly obtain the required result.

V� Context S(),() X [,()�

PC X N 1+()�VWDWLF)LHOG
Y Globals X N 1+() VWDWLF)LHOG()=

PC X N 1+()�VWDWLF)LHOG Context N 1+(),() X [,()� W

PC X N 1+()�VWDWLF)LHOG GPC X N 1+() VWDWLF)LHOG e::Æ Ö� 0 GPC X N 1+()() VWDWLF)LHOG e::Æ Ö W�

W Context N 1+(),() X [,()�

0 GPC X N 1+()() Context N 1+(),() 0 G Main 0,()() e,()�

Y�. W Context N 1+(),() Y� e,()� 0 G Main 0,()() EVWDWLF)LHOG Y�{ } &²¾$

X Y�= [e=

S min L Y Globals X L() VWDWLF)LHOG()=|{ }=

0 S N 1+� �

S 0= X 0
Creation Y() Main 0,()�VWDWLF)LHOG()=

Main 0,()�VWDWLF)LHOG() 0 G Main 0,()() VWDWLF)LHOG e::Æ Ö�

0 G Main 0,()() VWDWLF)LHOG e::Æ Ö Y�� Y� e,() Y� e,()�

Main 0,()�VWDWLF)LHOG Context 0(),() Y� e,()�

S 0> Globals X S 1–() VWDWLF)LHOG() Y�

*

X S 1– pc: pc wstack: Y 6 :: r, ,[]= pc r 6 , ,

X S 1– SF�VWDFN��,() YÄ

SF�VWDFN�� SSF head e::Æ Ö� 0 SSF() head e::Æ Ö 0 TSF v,()�

0 GSF() Context S 1–(),() 0 G Main 0,()() e,()�

0 GSF() EVWDWLF)LHOG 0 TSF v,(){ } &²

Y��. 0 TSF v,() Context S 1–(),() Y�� e,()� 0 G Main 0,()() EVWDWLF)LHOG Y��{ } &²¾$

Y�� Y�= SF�VWDFN�� Context S 1–(),() Y� e,()�

S 1–

143

6.7.5.6 Cases For Simple Expressions
The remaining cases prove the induction result for the simple expressions of the form

, and , for each form of transition. The rest of this chapter proves
those cases, ordered by the form of the transition. For most instructions, the strategy is to
map the expression evaluated after transition to an expression evaulated before transition,
and show that their values are the same and their types are suitably related.

6.7.5.7 Reduction Function
For each case, I define a partial function R : BExpRoot V BExpRoot satisfying the
following conditions:

For those H[S on which R is defined, we immediately obtain and
; the required result follows immediately from the

induction hypothesis.

In all the cases, we set .

6.7.5.8 Succession Lemma
Lemma 6-22. This lemma is very helpful for showing the preservation of types during
normal control flow. It states that if an instruction does not modify the value of a stack
variable or local variable (implying that it only transfers control within the current
method), then the type is preserved.

Here F is defined as follows:

Note that F is not defined for the expression H[Q; the expression H[S can only be H[Q when
the abstract machine is in exception-handling mode.

Proof: By definition,
requires , and

 for some .

VWDFN�P ORFDO�P H[Q

H[S Y, . X N 1+ PC X N 1+()�H[S,() YÄ X N PC X N()�R H[S(),() YÄÃ"

H[S X [, , .
PC X N 1+()�H[S Context N 1+(),() X [,()� PC X N()�H[S Context N(),() X [,()�Ã

"

X N PC X N()�R H[S(),() YÄ

PC X N()�H[S Context N(),() X [,()�

SF PC X N()=

H[S M 6� /�, , , . PC X N 1+()�H[S PC X M()-PC X N 1+() Context M()::,() X [,()�

H[S H[Q� Succ PC X M() PC X N 1+() 6� /�, ,,() 1²¾

W F V W�, , , . PC X N 1+()�H[S W FÆ Ö� V FÆ Ö W�� W� Context M(),() X [,()�

V 0 F H[S 6� /�, ,()()=
¾ ¾

¾

$Ã

¾

"

F VWDFN�P 6� /�, ,() 6�SF=

F ORFDO�P 6� /�, ,() /�SF=

PC X N 1+()�H[S PC X M()-PC X N 1+() Context N()::,() X [,()�

PC X N 1+()�H[S W FÆ Ö� 0 W() FÆ Ö W���

W�� PC X M()-PC X N 1+() Context N()::,() X [,()� W F W��, ,

144

Consider the two cases for H[S; we show that in both cases,
where .

Case: . Then and . We have

Case: . Then and . We have

Now by the instance propagation property (Section 6-10), there exists such that
 and . This implies , as

required. n

6.7.5.9 Step: ORDG rule
The rule for ORDG gives

.

The function R is:

Now consider the different cases for H[S. Because R is defined for all and
, this proof suffices to guarantee the induction hypothesis. Note that H[S cannot

be H[Q since the machine is in state RUNNING.

1 contains the constraints

{ LSF ELQGH[7SF�Y��S�SF Etail�6SF��S�SF Ehead�7SF�Y�`� Succ(SF, SF+1, S�SF, LSF)

We also have and therefore
. This implies that

Case: , . Then .

The evaluation rules show is of the form where .
Therefore and , as required.

In this case we apply the succession lemma (6-22) with and
, with P occurrences of “tail”. Also, . Therefore

 where ; this implies , where
. The sequence has tails, therefore

W)PC X M()�PC X N 1+() V{ } 1²

V 0 F H[S 6�SF /�SF, ,()()=

H[S VWDFN�P= W SPC X N 1+()= V 0 6�SF()=
SPC X N 1+())PC X M()�PC X N 1+() 6�{ } Succ PC X M() PC X N 1+() 6� /�, ,,()²

H[S ORFDO�P= W LSF= V 0 /�SF()=
LPC X N 1+())PC X M()�PC X N 1+() /�{ } Succ PC X M() PC X N 1+() 6� /�, ,,()²

W�

V FÆ Ö W�� W��)PC X M()�PC X N 1+() W�{ } &² W� Context N(),() X [,()�

Instruction pc() ORDG index=
X N pc: pc wstack: 6 locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: / index() 6 :: locals: / r, , ,[]=

R VWDFN�P() VWDFN� P 1–()= P 0>

R VWDFN��() ORFDO�LQGH[=

R ORFDO�Q() ORFDO�Q=

VWDFN�P

ORFDO�Q

Context N 1+() SF- SF 1+() Context N()::=
PC X N 1+()�H[S SF- SF 1+() Context N()::,() X [,()�

W F V W�, , , . PC X N 1+()�H[S W FÆ Ö� V FÆ Ö W�� W� Context N(),() X [,()�
V 0 F H[S S�SF LSF GSF, , ,()()=

¾ ¾
¾

$

H[S VWDFN�P= P 0> R H[S() VWDFN� P 1–()=

/ index() 6 :: Y0 ... YP 6 �:: :: :: YP Y=
6 Y1 ... YP 6 �:: :: ::= X N SF�VWDFN� P 1–(),() YPÄ Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= V 0 S�SF()=
0 S�SF() FÆ Ö W�� W� Context N(),() X [,()� 0 SSF() F�Æ Ö W��

F tail F�::= F� P 1–

145

. All together then,
 as required.

Case: . Then .

The evaluation rules show is of the form where
. Therefore , as required.

In this case and . Also, . Therefore
, i.e. . This, plus the constraints in 1, implies

. Also, ; all together
then, as required.

Case: . Then .

The evaluation rules show . Therefore , as
required.

In this case and . Also, . Therefore .
Also, ; all together then,

 as required.

6.7.5.10 Induction Step: VWRUH rule
The rule for VWRUH gives

.

The function R is:

Now consider the different cases for H[S. Because R is defined for all BExpRoots other than
H[Q, this proof suffices to guarantee the induction hypothesis.

1 contains the constraints

{ 6SF Etail�S�SF, SSF Ehead�7SF�Y� L�SF ELQGH[7SF�Y�`

{ L�SF EL 7SF�L | L ³ LocalNames(SF) ¾ L � LQGH[}

{ LSF EL 7SF�L | L ³ LocalNames(SF) ¾ L � LQGH[} Succ(SF, SF+1, S�SF, L�SF)

We also have and therefore
. This implies that

PC X N()�VWDFN� P 1–() 0 SSF 1+() F�Æ Ö�

PC X N()�VWDFN� P 1–() Context N(),() X [,()�

H[S VWDFN�0= R H[S() ORFDO�LQGH[=

/ index() 6 :: Y0 ... YP 6 �:: :: ::
Y0 Y / index()= = X N SF�ORFDO�LQGH[,() / index()Ä Y=

W SSF 1+= F head e::= V 0 S�SF()=
0 S�SF() FÆ Ö 0 TSF v,()� W� 0 TSF v,()=
0 LSF() LQGH[Æ Ö W�� PC X N()�ORFDO�LQGH[0 LSF() LQGH[e::Æ Ö�

PC X N()�ORFDO�LQGH[Context N(),() X [,()�

H[S ORFDO�Q= R H[S() ORFDO�Q=

/ Q() Y= X N SF�ORFDO�Q,() / Q()Ä Y=

W LSF 1+= F Q e::= V 0 LSF()= 0 LSF() FÆ Ö W��

PC X N()�ORFDO�Q 0 LSF() FÆ Ö�

PC X N()�ORFDO�Q Context N(),() X [,()�

Instruction pc() VWRUH index=
X N pc: pc wstack: Y� 6 :: locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: 6 locals: / index: v�[] r, , ,[]=

5 VWDFN�P() VWDFN� P 1+()=

5 ORFDO�LQGH[() VWDFN��=

5 ORFDO�Q() ORFDO�Q= Q LQGH[�

Context N 1+() SF- SF 1+() Context N()::=
PC X N 1+()�H[S SF- SF 1+() Context N()::,() X [,()�

W F V W�, , , . PC X N 1+()�H[S W FÆ Ö� V FÆ Ö W�� W� Context N(),() X [,()�
V 0 F H[S S�SF LSF GSF, , ,()()=

¾ ¾
¾

$

146

Case: . Then .

The evaluation rules show is of the form where . Therefore
 and , as required.

In this case I apply the succession lemma (6-22) with and
, with P occurrences of “tail”. Also, . Therefore

; this implies , where . The sequence has
 tails, therefore . All together then,

 as required.

Case: . Then .

The evaluation rules show . Therefore , as required.

I apply the succession lemma (6-22) with and . Also,
. Therefore , i.e. . This, plus the constraints in

1, implies . Also, ; all
together then, as required.

Case: , where . Then .

The evaluation rules show . Therefore , as
required.

In this case and . Also, . Therefore
and . This, plus the constraints in 1, implies Also,

; all together then,
 as required.

6.7.5.11 Induction Step: QHZ rule
The rule for QHZ gives

The function R is:

For the expressions on which R is defined, the proof of R’s correctness is identical to the
cases for ORDG, and is not repeated here.

For , by the definition of
Creation; thus the induction result is trivially satisfied.

is undefined

H[S VWDFN�P= R H[S() VWDFN� P 1+()=

6 Y0 ... YP 6 �:: :: :: YP Y=
Stack X N() Y� Y0 ... YP 6 �:: :: :: ::= X N SF�VWDFN� P 1+(),() YPÄ Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= V 0 S�SF()=
0 S�SF() FÆ Ö W�� 0 SSF() F�Æ Ö W�� F� tail F::= F

P 1+ PC X N()�VWDFN� P 1+() 0 SSF 1+() F�Æ Ö�

PC X N()�VWDFN� P 1+() Context N(),() X [,()�

H[S ORFDO�LQGH[= R H[S() VWDFN��=

v� Y= X N SF�VWDFN��,() v�Ä Y=

W LSF 1+= F LQGH[e::=
V 0 L�SF()= 0 L�SF() FÆ Ö W�� W� 0 TSF v,()=

0 SSF() KHDG e::Æ Ö W�� PC X N()�SF�VWDFN�� 0 SSF() KHDG e::Æ Ö�

PC X N()�SF�VWDFN�� Context N(),() X [,()�

H[S ORFDO�Q= Q LQGH[� R H[S() ORFDO�Q=

/ Q() Y= X N SF�ORFDO�Q,() / Q()Ä Y=

W LSF 1+= F Q e::= V 0 L�SF()= 0 L�SF() FÆ Ö W��

W� 0 TSF Q,()= 0 LSF() Q e::Æ Ö W��

PC X N()�ORFDO�Q 0 LSF() Q e::Æ Ö�

PC X N()�ORFDO�Q Context N(),() X [,()�

Instruction pc() QHZ classID=
X N pc: pc wstack: 6 locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: UHI 6 :: locals: / r, , ,[]=

5 VWDFN�P() VWDFN� P 1–()= P 0>

5 VWDFN��()

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN��= Creation Y() N 1+ SF 1+()�VWDFN��,()=

147

6.7.5.12 Induction Step: DFRQVWBQXOO rule
The proof for this case is the same as for the QHZ rule.

6.7.5.13 Induction Step: ELSXVK rule
The proof for this case is the same as for the QHZ rule.

6.7.5.14 Induction Step: rule for spontaneous exception throw
The rule for spontaneous exception throw gives

.

Furthermore .

The function R is:

Case: .

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: . Then .

The evaluation rules show . Therefore .
Furthermore, since and ,

. The result then follows from the induction
hypothesis.

Case: .

R is undefined for . However implies
; thus the induction result is trivially satisfied.

6.7.5.15 Induction Step: LQYRNHVWDWLF rule
The rule for LQYRNHVWDWLF gives

Furthermore, . The induced constraints include

is undefined

is undefined

classID ErrorClassIDs³

X N mode: RUNNING pc: pc wstack: 6 locals: / r, , , ,[]=
X N 1+ mode: THROWING pc: pc wstack: UHI e:: locals: / r, , , ,[]=

Context N() Context N 1+()=

5 VWDFN�P()

5 H[Q()

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P=

H[S ORFDO�Q= R H[S() ORFDO�Q=

/ Q() Y= X N SF�ORFDO�Q,() / Q()Ä Y=
PC X N() SF PC X N 1+()= = Context N() Context N 1+()=

PC X N()�ORFDO�Q Context N(),() X [,()�

H[S H[Q=

SF�H[Q X N 1+ SF�H[Q,() YÄ

Creation Y() N 1+ SF�H[Q,()=

Instruction pc() LQYRNHVWDWLF methodImpl=
X N pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - r, , , ,[]=
X N 1+ pc: pc� wstack: e locals: [0: Y0, 1: Y1] mstack: pc 6 / , ,() - :: r, , , ,[]=
pc� methodImpl 0,()=

Context N 1+() pc Context N()::=

148

{ 6SF Etail�TSF,t1, 6SF Ehead�TSF,v1,�TSF,t1 Etail�TSF,t2, TSF,t1 Ehead TSF,v0,
MPHWKRG,PSO)SF 7SF�P�� , }

The initial constraints also contain

The function R is:

Case: . This case cannot occur because .

Case: . Then .

In this case Q must be 0 or 1 and . Then the evaluation rules show that
.

Now, implies that
. Combining this with

gives . Therefore
.

If then and
. Otherwise ,
 and . Either way,

. The result then follows directly from the
induction hypothesis.

6.7.5.16 Induction Step: LQYRNHYLUWXDO rule
The rule for LQYRNHYLUWXDO gives

where .

The induced constraints include

{ 6SF Etail�TSF,t1, 6SF Ehead�TSF,v1,�TSF,t1 Etail�TSF,t2, TSF,t1 Ehead TSF,v0, TSF,v0�

EPHWKRG,'�7SF�P��6�SF Etail�TSF,t2, 6�SF Ehead�TSF,r�� ,
 }

is undefined otherwise

TSF m, Eparam-0 TSF v0, TSF m, Eparam-1 TSF v1,

MmethodImpl Eparam-0 TmethodImpl p0, MmethodImpl Eparam-1 TmethodImpl p1,
Lpc� E0 TmethodImpl p0, Lpc� E1 TmethodImpl p1,

, ,
,

{
}

5 ORFDO�Q() VWDFN� 1 Q–()= 0 Q 1� �

5 H[S()

H[S VWDFN�P= WStack X N 1+() e=

H[S ORFDO�Q= R H[S() VWDFN� 1 Q–()=

Y YQ=
X N SF�VWDFN� 1 Q–(),() YQÄ Y=

pc��ORFDO�Q Context N 1+(),() X [,()�

0 TmethodImpl pQ,() pc Context N()::,() X [,()�

0 MmethodImpl() Eparam-Q 0 TmethodImpl pQ,() 0 MmethodImpl())SF 0 TSF m,()
0 TSF m,() Eparam-0 0 TSF vQ,()

, ,{
} &²

0 TmethodImpl pQ,())SF 0 TSF vQ,(){ } &²

0 TSF vQ,() Context N(),() X [,()�

Q 0= pc�VWDFN� 1 Q–() SSF tail head e:: ::Æ Ö�

0 SSF() tail head e:: ::Æ Ö 0 TSF v0,()� Q 1=
pc�VWDFN� 1 Q–() SSF head e::Æ Ö� 0 SSF() head e::Æ Ö 0 TSF v1,()�

pc�VWDFN� 1 Q–() Context N(),() X [,()�

Instruction pc() LQYRNHYLUWXDO methodID=
X N pc: pc wstack: Y1 Y0 6 :: :: locals: / mstack: - r, , , ,[]=
X N 1+ pc: pc� wstack: e locals: [0: Y0, 1: Y1] mstack: pc 6 / , ,() - :: r, , , ,[]=

pc� methodImpl 0,()=

TSF m, Eparam-0 TSF v0,

TSF m, Eparam-1 TSF v1,

149

The initial constraints also contain

The function R is:

Case: . This case cannot occur because .

Case: . Then .

In this case Q must be 0 or 1 and . Then the evaluation rules show that
.

Now, implies that
. Apply the preservation of virtual call types

lemma, setting , and , giving
.

If then and
. Otherwise ,
 and . Either way,

. The result then follows directly from the
induction hypothesis.

6.7.5.17 Induction Step: UHWXUQ rule
The rule for UHWXUQ gives

Let and . The transition must be an appli-
cation of LQYRNHVWDWLF or LQYRNHYLUWXDO, because only those rules extend .
Therefore or

. In the latter case,
; in the former case, define
.

In either case, 1 contains the constraints

{ 6SF� Etail TSF�,t1, 6SF� Ehead�TSF�,v1,�TSF�,t1 Etail�TSF�,t2, TSF�,t1 Ehead TSF�,v0,
6�SF� Etail TSF�,t2, 6�SF� Ehead�TSF�,r ` MethodCall(7SF�P, TSF,v0, TSF,v1, GSF, WSF,
7SF�U)

is undefined otherwise

MmethodImpl Eparam-0 TmethodImpl p0, MmethodImpl Eparam-1 TmethodImpl p1,
Lpc� E0 TmethodImpl p0, Lpc� E1 TmethodImpl p1,

, ,
,

{
}

5 ORFDO�Q() VWDFN� 1 Q–()= 0 Q 1� �

5 H[S()

H[S VWDFN�P= WStack X N 1+() e=

H[S ORFDO�Q= R H[S() VWDFN� 1 Q–()=

Y YQ=
X N SF�VWDFN� 1 Q–(),() YQÄ Y=

pc��ORFDO�Q Context N 1+(),() X [,()�

0 TmethodImpl pQ,() Context N 1+(),() X [,()�

F param-Q= Y TSF vQ,= Y� TmethodImpl pQ,=
0 TSF vQ,() Context N(),() X [,()�

Q 0= pc�VWDFN� 1 Q–() SSF tail head e:: ::Æ Ö�

0 SSF() tail head e:: ::Æ Ö 0 TSF v0,()� Q 1=
pc�VWDFN� 1 Q–() SSF head e::Æ Ö� 0 SSF() head e::Æ Ö 0 TSF v1,()�

pc�VWDFN� 1 Q–() Context N(),() X [,()�

Instruction pc() UHWXUQ=
X N pc: SF wstack: Y� 6 :: locals: / mstack: pc�� 6 � / �, ,() - :: r, , , ,[]=
X N 1+ pc: pc�� 1+ wstack: Y� 6 �:: locals: / � mstack: - r, , , ,[]=

F CallerState N()= pc� PC X F()= X F X F 1+ã

-

Instruction pc�() LQYRNHYLUWXDO�PHWKRG,'=
Instruction pc�() LQYRNHVWDWLF�PHWKRG,PSO=
PHWKRG,PSO CodeLocMethod PC X F 1+()()=
PHWKRG,PSO CodeLocMethod PC X F 1+()()=

Succ pc� pc� 1 S�SF� LSF�, ,+,()

150

Note also that .

By the lemma governing preservation of caller state (Lemma 6-15),
. This implies .

Case: for some .

Then , and therefore .

In this case I apply the succession lemma (6-22) at with and .
Also, . Therefore . Also, ;
all together then, . Applying the induction
hypothesis setting gives the required result.

Case: for some .

The evaluation rules show is of the form where .
Therefore . Now

; therefore
.

We apply the succession lemma (6-22) at with and and
, with P occurrences of “tail”. Also, .

Therefore . This implies , where .
Therefore . All together then,

.

Applying the induction hypothesis setting gives the required result.

Case: .

Then , and therefore . I will prove that
; the correctness of this case then follows immedi-

ately using the induction hypothesis.

From and the induced constraints, it
follows that , and

, for some W.

We also have by the
induced constraints. Therefore and then

.

We apply the preservation of return types lemma (Section 6.7.4.2) at , obtaining
.

Now . The constraint induced by the return instruction is
, i.e. . We just obtained

. All that remains to be shown is
.

Context N 1+() pc�- pc� 1+() Context F()::=

X F pc: pc�� wstack: Y�1 Y�0 6�:: :: locals: / � mstack: - r, , , ,[]= pc� pc��=

H[S ORFDO�Q= Q

Y / � Q()= X F pc��H[S,() YÄ

M F= W LSF� 1+= F Q e::=
V 0 LSF�()= 0 LSF�() FÆ Ö W�� PC X F()�ORFDO�Q 0 LSF�() FÆ Ö�

PC X F()�ORFDO�Q Context F(),() X [,()�

L F=

H[S VWDFN�P= P 0>

Y� 6 �:: Y0 ... YP 6 ��:: :: :: YP Y=
6 � Y1 ... YP 6 ��:: :: ::=

MStack X F() Y�1 Y�0 6�:: :: Y�1 Y�0 Y1 ... YP 6 ��:: :: :: :: ::= =
X F pc��VWDFN� P 1+(),() YPÄ Y=

M F= W SSF� 1+=
F tail ... tail head e:: :: :: ::= V 0 S�SF�()=

0 S�SF�() FÆ Ö W�� 0 SSF�() F�Æ Ö W�� F� tail F::=
PC X F()�VWDFN� P 1+() 0 SSF�() F�Æ Ö�

PC X F()�VWDFN� P 1+() Context F(),() X [,()�

L F=

H[S VWDFN��=

Y Y�= X N SF�VWDFN��,() YÄ

SF�VWDFN�� Context N(),() X [,()�

PC X N 1+()�VWDFN�� Context N 1+(),() X [,()�

PC X N 1+()�VWDFN�� SSF� 1+ head e::Æ Ö� 0 SSF� 1+() head e::Æ Ö W�

W Context N 1+(),() X [,()�

0 SSF� 1+())SF�� SF� 1+() 0 SSF�() 0 SSF�() Ehead 0 Tpc� r,(),{ } &²

W)SF�� SF� 1+() 0 Tpc� r,(){ } &²

0 Tpc� r,() Context F(),() X [,()�

L N=
Z . Context N() Z Context F 1+()ª= 0 RSF() Z,() 0 R PHWKRG,PSO 0,()() e,()�¾$

SF�VWDFN�� SSF head e::Æ Ö�

0 SSF() Ehead 0 RSF(){ } &² 0 SSF() head e::Æ Ö 0 RSF()�

0 RSF() Z,() 0 R PHWKRG,PSO 0,()() e,()�

0 R PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

151

Consider the case in which the method was invoked by LQYRNHVWDWLF. Then
. The constraints { MPHWKRG,PSO�)pc��7SF��P��

�`�DUH�LQGXFHG�E\�WKH�UXOH�IRU�LQYRNHVWDWLF��7KHUHIRUH�

��&RPELQLQJ�WKLV�ZLWK�

 gives as
required.

Consider the case in which the method was invoked by LQYRNHYLUWXDO. Choose
PHWKRG,' such that . Set ,

, and . The intial constraints contain
. Now

we appeal to the preservation of virtual call types (Lemma 6-19), applied to
, to obtain ,

as required.

6.7.5.18 Induction Step: exceptional returns
The rule for exceptional returns gives

Let and . The transition must be an appli-
cation of LQYRNHVWDWLF or LQYRNHYLUWXDO, because only those rules extend .
Therefore or

. In the latter case,
; in the former case, define
. In either case, 1 contains

{ 6SF� Etail TSF�,t1, 6SF¶ Ehead�TSF�,v1,�TSF�,t1 Etail�TSF�,t2, TSF�,t1 Ehead TSF�,v0,
6�SF� Etail TSF�,t2, 6�SF� Ehead�TSF�,r `

MethodCall(7SF�P, TSF,v0, TSF,v1, GSF, WSF, 7SF�U)

Note also that .

By the lemma governing preservation of caller state (Lemma 6-15),
. This implies .

Case: .

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: for some .

Then , and therefore . From
, and observing that

 and , clearly

Context F 1+() SF� Context F()::=
TSF� m, Eresult TSF� r,
0 R PHWKRG,PSO 0,()())SF� 0 TSF� r,(){ } &²

0 TSF� r,() Context F(),() X [,()� 0 R PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

Instruction pc�() LQYRNHYLUWXDO�PHWKRG,'= F result=
L F= Y� 0 R PHWKRG,PSO 0,()()= Y 0 Tpc� r,()=

MPHWKRG,PSO Eresult R PHWKRG,PSO 0,() Tpc� m, Eresult Tpc� r, Tpc� v0, EPHWKRG,' Tpc� m,, ,{ }

0 Tpc� r,() Context F(),() X [,()� 0 R PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

X N mode: THROWING pc: pc wstack: ref e:: locals: / mstack: pc�� 6 � / �, ,() - :: r, , , , ,[]=
X N 1+ mode: THROWING pc: pc�� wstack: ref e:: locals: / � mstack: - r, , , , ,[]=

F CallerState N()= pc� PC X F()= X F X F 1+ã

-

Instruction pc�() LQYRNHYLUWXDO�PHWKRG,'=
Instruction pc�() LQYRNHVWDWLF�PHWKRG,PSO=
PHWKRG,PSO CodeLocMethod PC X F 1+()()=
PHWKRG,PSO CodeLocMethod PC X F 1+()()=

Context N 1+() err-SF Context F()::=

X F pc: pc�� wstack: Y�1 Y�0 6�:: :: locals: / � mstack: - r, , , ,[]= pc�� pc�=

H[S VWDFN�P=

H[S ORFDO�Q= Q

Y / � Q()= X F pc��H[S,() YÄ

PC X N 1+()�ORFDO�Q Context N 1+(),() X [,()�

Context N 1+() Context F()= PC X N 1+() PC X F()=

152

. Applying the induction hypothesis setting
 gives the required result.

Case: .

Then , and therefore . I will prove that
; the correctness of this case then follows immediately

using the induction hypothesis.

From and the induced constraints, it follows
that where .

I apply the preservation of return types lemma (Section 6.7.4.2) at , obtaining
.

Now . All that remains to be shown is
.

Consider the case in which the method was invoked by LQYRNHVWDWLF. Then
. The constraints { MPHWKRG,PSO�)pc��7SF��P��

�`�DUH�LQGXFHG�E\�WKH�UXOH�IRU�LQYRNHVWDWLF��7KHUHIRUH�

��&RPELQLQJ�WKLV�ZLWK�

 gives as
required.

Consider the case in which the method was invoked by LQYRNHYLUWXDO. Choose
PHWKRG,' such that . Set ,

, and . The intial constraints contain
. Now I

appeal to the preservation of virtual call types, applied to ,
to obtain , as required.

6.7.5.19 Induction Step: DWKURZ rule
The rule for DWKURZ gives

Furthermore , and the induced constraint is
.

The function R is:

is undefined

PC X F()�ORFDO�Q Context F(),() X [,()�

L F=

H[S H[Q=

Y ref= X N SF�H[Q,() YÄ

SF�H[Q Context N(),() X [,()�

PC X N 1+()�H[Q Context N 1+(),() X [,()�

PC X N 1+()�H[Q XSF� eÆ Ö� 0 XSF�() Context N 1+(),() X [,()�

L N=
Z . Context N() Z Context F 1+()ª= 0 XSF() Z,() 0 X PHWKRG,PSO 0,()() e,()�¾$

SF�H[Q XSF eÆ Ö�

0 X PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

Context F 1+() SF� Context F()::=
TSF� m, Eexn XSF�
0 X PHWKRG,PSO 0,()())SF� 0 XSF�(){ } &²

0 XSF�() Context F(),() X [,()� 0 X PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

Instruction pc�() LQYRNHYLUWXDO�PHWKRG,'= F exn=
L F= Y� 0 X PHWKRG,PSO 0,()()= Y 0 Xpc�()=

MPHWKRG,PSO Eexn X PHWKRG,PSO 0,() Tpc� m, Eexn Xpc� Tpc� v0, EPHWKRG,' Tpc� m,, ,{ }

0 Xpc�() Context F(),() X [,()�

0 X PHWKRG,PSO 0,()() Context F 1+(),() X [,()�

Instruction pc() DWKURZ=
X N mode: RUNNING pc: pc wstack: Y� 6 :: locals: / r, , , ,[]=
X N 1+ mode: THROWING pc: pc wstack: Y� e:: locals: / r, , , ,[]=

Context N() Context N 1+()=
SSF Ehead XSF{ }

5 VWDFN�P()

5 H[Q() VWDFN��=

5 ORFDO�Q() ORFDO�Q=

153

Case: . Then .

This case cannot occur because stack expressions do not evaluate to anything in the
THROWING state.

Case: . Then .

The evaluation rules show and therefore .

Now, implies that . But
since , it follows that .
The result then follows directly from the induction hypothesis.

Case: .

The proof for this case is identical to the proof for the corresponding case for spontaneous
exception throws.

6.7.5.20 Induction Step: rule for exception catching
The rule for exception catching gives

where for some FODVV,', .

The the initial constraints contain

Succ((PHWKRG, RIIVHW), (PHWKRG, KDQGOHU), S�exn-(PHWKRG, RIIVHW)�FODVV,', L(PHWKRG, RIIVHW))

{ S�exn-(PHWKRG, RIIVHW)�FODVV,' Ehead�;(PHWKRG, RIIVHW) }.

The function R is:

We also have .

Case: .

Since , and . Then
. The rules for evaluation give .

Now, implies that for some ,
 and

. We also have
.

Therefore, for some ,
. Indeed,

is undefined

H[S VWDFN�P= R H[S() VWDFN�P=

H[S H[Q= R H[S() VWDFN��=

Y Y�= X N SF�VWDFN��,() Y�Ä Y=

SF�H[Q Context N 1+(),() X [,()� XSF Context N(),() X [,()�

0 SSF() Ehead 0 XSF(){ } &² SF�VWDFN�� Context N(),() X [,()�

H[S ORFDO�Q=

X N mode: THROWING pc: method offset,() wstack: ref e:: locals: / r, , , ,[]=
X N 1+ mode: RUNNING pc: method handler,() wstack: ref e:: locals: / r, , , ,[]=

KDQGOHU CatchBlockOffset method offset,() FODVV,',()=

5 VWDFN�P() P 0>

5 VWDFN��() H[Q=

5 ORFDO�Q() ORFDO�Q=

Context N 1+() method offset,()- method handler,() Context N()::=

H[S VWDFN�P=

X N 1+ method handler,()�VWDFN�P,() YÄ Y ref= P 0=
R H[S() H[Q= X N method offset,()�H[Q,() YÄ

method handler,()�VWDFN�� Context N 1+(),() X [,()� W

0 S method handler,()() Ehead W{ } &²

W method offset,()- method handler,() Context N()::,() X [,()�

0 S method handler,()()) method offset,()- method handler,() 0 S�exn- method offset,()-FODVV,'(){ } &²

W�

W) method offset,()- method handler,() W� 0 S�exn- method offset,()-FODVV,'() Ehead W�,{ } &²

154

. Therefore . This implies
. The result then follows from the induction

hypothesis.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.21 Induction Step: JHWILHOG rule
The rule for JHWILHOG gives

Also, the induced constraints are

{ 6SF Etail�TSF,t, 6SF Ehead�TSF,obj, TSF,obj EILHOG,'�TSF,v, S�SF Ehead TSF,v,
S�SF Etail TSF,t ` Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)

The function R is:

Case: , . Then .

The evaluation rules show is of the form
 where . Therefore

 and , as required.

In this case I apply the succession lemma (6-22) with and
, with occurrences of “tail”. Also, .

Therefore where ; this implies
, where . Then . Also

. All together then,
; the result follows immediately from the

induction hypothesis.

Case: . Then .

The evaluation rules give and
.

In this case I apply the succession lemma (6-22) with and . Also,
. Therefore where ; this

implies . Furthermore,

W� 0 X method offset,()()= 0 X method offset,()() Context N(),() X [,()�

method offset,()�H[Q Context N(),() X [,()�

H[S ORFDO�Q=

Instruction pc() JHWILHOG fieldID=
X N pc: pc wstack: ref 6 :: heap: + locals: / r, , , ,[]=
X N 1+ pc: pc 1+ wstack: HeapObjFields + Val ref()()() fieldID() 6 :: heap: + locals: / r, , , ,[]=

5 VWDFN�P() VWDFN�P= P 0>

5 VWDFN��() VWDFN���ILHOG,'=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= P 0> R H[S() VWDFN�P=

HeapObjFields + Val ref()()() fieldID() 6 ::
Y0� Y1� ... YP� 6 �:: :: :: :: YP� Y=
MStack X N() ref Y1� ... YP� 6 �:: :: :: ::= X N SF�VWDFN�P,() YP�Ä Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= P 0> V 0 S�SF()=

0 S�SF() FÆ Ö W�� W� Context N(),() X [,()�

0 TSF t,() F�Æ Ö W�� F tail F�::= 0 SSF() FÆ Ö W��

PC X N()�VWDFN�P 0 SSF() FÆ Ö�

PC X N()�VWDFN�P Context N(),() X [,()�

H[S VWDFN��= R H[S() VWDFN���ILHOG,'=

Y HeapObjFields + Val ref()()() fieldID()=
X N SF�VWDFN���ILHOG,',() YÄ

W SSF 1+= F head e::=
V 0 S�SF()= 0 S�SF() head e::Æ Ö W�� W� Context N(),() X [,()�

W� 0 TSF v,()=

155

 and
. All together then,

; the result follows immediately from
the induction hypothesis.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.22 Induction Step: SXWILHOG rule
The rule for SXWILHOG gives

The induced constraints are

{ 6SF Etail�TSF,t, 6SF Ehead�TSF,v,�TSF,t Etail�S�SF, TSF,t Ehead TSF,obj,
TSF,obj EILHOG,' TSF,v ` Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)

The function R is:

Case: . Then .

The evaluation rules show is of the form where .
Therefore and

, as required.

In this case I apply the succession lemma (6-22) with and
, with occurrences of “tail”. Also, .

Therefore where ; this implies
. Also .

All together then, ; the result follows
immediately from the induction hypothesis.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.23 Induction Step: JHWVWDWLF rule
The rule for JHWVWDWLF gives

PC X N()�VWDFN���ILHOG,' SSF head ILHOG,' e:: ::Æ Ö�

0 SSF() head ILHOG,' e:: ::Æ Ö 0 TSF v,()�

PC X N()�VWDFN���ILHOG,' Context N(),() X [,()�

H[S ORFDO�Q=

Instruction pc() SXWILHOG fieldID=
X N pc: pc wstack: Y� ref 6 :: :: locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: 6 locals: / r, , ,[]=

5 VWDFN�P() VWDFN� P 2+()=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= R H[S() VWDFN� P 2+()=

6 Y0� Y1� ... YP� 6 �:: :: :: :: YP� Y=
MStack X N() Y� ref Y0� ... YP� 6 �:: :: :: :: ::=

X N SF�VWDFN� P 2+(),() YP�Ä Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= P V 0 S�SF()=

0 S�SF() FÆ Ö W�� W� Context N(),() X [,()�

0 SSF() tail tail F:: ::Æ Ö W�� PC X N()�VWDFN� P 2+() 0 SSF() tail tail F:: ::Æ Ö�

PC X N()�VWDFN� P 2+() Context N(),() X [,()�

H[S ORFDO�Q=

Instruction pc() JHWVWDWLF�VWDWLF)LHOG=
X N pc: pc wstack: 6 globals: * locals: / r, , , ,[]=
X N 1+ pc: pc 1+ wstack: * VWDWLF)LHOG() 6 :: globals: * locals: / r, , , ,[]=

156

The induced constraints are

{ GSF EVWDWLF)LHOG 7SF�Y��S�SF Etail�6SF��S�SF Ehead�7SF�Y�`

Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF).

The function R is:

Case: , . Then .

The proof for this case is identical to that for the corresponding case for ORDG.

Case: . Then .

The evaluation rules give and therefore .

In this case I apply the succession lemma (6-22) with and . Also,
. Therefore where ; this

implies . Furthermore, and
. All together then,

; the result follows immediately from the
induction hypothesis.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.24 Induction Step: SXWVWDWLF rule
The rule for SXWVWDWLF gives

The induced constraints are

{ 6SF Etail�S�SF, SSF Ehead�7SF�Y� GSF EfieldID 7SF�Y�`

Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF).

The function R is:

Case: . Then .

The proof for this case is identical to that for the corresponding case for VWRUH.

5 VWDFN�P() VWDFN� P 1–()= P 0>

5 VWDFN��() VWDWLF)LHOG=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= P 0> R H[S() VWDFN�P=

H[S VWDFN��= R H[S() VWDWLF)LHOG=

Y * VWDWLF)LHOG()= X N SF�VWDWLF)LHOG,() YÄ

W SSF 1+= F head e::=
V 0 S�SF()= 0 S�SF() head e::Æ Ö W�� W� Context N(),() X [,()�

W� 0 TSF v,()= PC X N()�VWDWLF)LHOG GSF VWDWLF)LHOG e::Æ Ö�

0 GSF() VWDWLF)LHOG e::Æ Ö 0 TSF v,()�

PC X N()�VWDWLF)LHOG Context N(),() X [,()�

H[S ORFDO�Q=

Instruction pc() SXWVWDWLF fieldID=
X N pc: pc wstack: Y� 6 :: locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: 6 locals: / r, , ,[]=

5 VWDFN�P() VWDFN� P 1+()=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= R H[S() VWDFN� P 1+()=

157

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.25 Induction Step: LDGG rule
The rule for LDGG gives

The induced constraints are

{ 6SF Etail�TSF,t1, TSF,t1 Etail�TSF,t2, S�SF Etail TSF,t2,�S�SF Ehead TSF,v `�

Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)

The function R is:

Case: . Then .

The evaluation rules show is of the form
 where . Therefore

 and , as
required.

In this case I apply the succession lemma (6-22) with and
, with occurrences of “tail”. Also, .

Therefore where . This implies that is of the
form where . This in turn implies .
Also . All together then,

; the result follows immediately from the
induction hypothesis.

Case: .

Then by the definition of Creation, so the
induction result is satisfied.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.26 Induction Step: LIFPSHT rules
The rules for LIFPSHT give

is undefined

H[S ORFDO�Q=

Instruction pc() LDGG classID=
X N pc: pc wstack: v1 v2 6 :: :: locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: Val v1() Val v2()+ W,() 6 :: locals: / r, , ,[]=

5 VWDFN�P() VWDFN� P 1+()= P 0>

5 VWDFN��()

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= R H[S() VWDFN� P 1+()=

Val v1() Val v2()+ W,() 6 ::
Y0� Y1� ... YP� 6 �:: :: :: :: YP� Y=
MStack X N() v1 v2 Y1� ... YP� 6 �:: :: :: :: ::= X N SF�VWDFN� P 1+(),() YP�Ä Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= P 0> V 0 S�SF()=

0 S�SF() FÆ Ö W�� W� Context N(),() X [,()� F

tail F�:: 0 TSF t2,() F�Æ Ö W�� 0 SSF() tail tail F�:: ::Æ Ö W��

PC X N()�VWDFN� P 1+() 0 SSF() tail F::Æ Ö�

PC X N()�VWDFN� P 1+() Context N(),() X [,()�

H[S VWDFN��=

Creation Y() N 1+ SF 1+()�VWDFN��,()=

H[S ORFDO�Q=

158

where either or .

The induced constraints are

{ 6SF Etail�S�SF ` Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)
Succ(SF, (CodeLocMethod(SF), RIIVHW), S�SF, LSF, GSF, XSF, RSF).

The function R is:

Case: .

The proof for this case is identical to that for the corresponding case for VWRUH. The
successor lemma is applicable regardless of which branch is taken.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG. The
successor lemma is applicable regardless of which branch is taken.

6.7.5.27 Induction Step: JRWR rule
The rules for JRWR give

The induced constraints are

Succ(SF, (CodeLocMethod(SF), RIIVHW), SSF, LSF, GSF, XSF, RSF)

The function R is:

Case: .

The evaluation rules show is of the form where .
Therefore , as required.

In this case I apply the succession lemma (6-22) with and
, with occurrences of “tail”. Also, .

Therefore where . Also

Instruction pc() LIBFPSHT offset=
X N pc: pc wstack: Y� 6 :: locals: / r, , ,[]=
X N 1+ pc: pc� wstack: 6 locals: / r, , ,[]=

pc� SF 1+= pc� CodeLocMethod pc() RIIVHW,()=

5 VWDFN�P() VWDFN� P 1+()=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P=

H[S ORFDO�Q=

Instruction pc() JRWR offset=
X N pc: pc wstack: 6 locals: / r, , ,[]=
X N 1+ pc: CodeLocMethod pc() RIIVHW,() wstack: 6 locals: / r, , ,[]=

5 VWDFN�P() VWDFN�P()=

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P=

6 Y0� Y1� ... YP� 6 �:: :: :: :: YP� Y=
X N SF�VWDFN�P,() YP�Ä Y=

W SSF 1+=
F tail ... tail head e:: :: :: ::= P V 0 S�SF()=

0 S�SF() FÆ Ö W�� W� Context N(),() X [,()�

159

. All together then,
; the result follows immediately from the

induction hypothesis.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.28 Induction Step: LQVWDQFHRI rules
The rules for LQVWDQFHRI give

for some value of .

The induced constraints are

{ 6SF Etail�TSF,t, S�SF Etail TSF,t,�S�SF Ehead�TSF,v `

Succ(SF, SF+1, S�SF, LSF, GSF, XSF, RSF)

The function R is:

Case: , . Then .

The proof for this case is the same as the proof for the corresponding case for the
JHWILHOG rule.

Case: .

Then by the definition of Creation, so the
induction result is trivially satisfied.

Case: .

The proof of this case is identical to that for the corresponding case for ORDG.

6.7.5.29 Induction Step: FKHFNFDVW rule
The proof for this case is the same as for the JRWR rule. A successful FKHFNFDVW does
not change the state in any way.

is undefined

PC X N()�VWDFN�P 0 SSF() FÆ Ö�

PC X N()�VWDFN�P Context N(),() X [,()�

H[S ORFDO�Q=

Instruction pc() LQVWDQFHRI fieldID=
X N pc: pc wstack: ref 6 :: locals: / r, , ,[]=
X N 1+ pc: pc 1+ wstack: Y� W,() 6 :: locals: / r, , ,[]=

Y�

5 VWDFN�P() VWDFN�P= P 0>

5 VWDFN��()

5 ORFDO�Q() ORFDO�Q=

H[S VWDFN�P= P 0> R H[S() VWDFN�P=

H[S VWDFN��=

Creation Y() N 1+ SF 1+()�VWDFN��,()=

H[S ORFDO�Q=

160

161

7 SEMI Implementation

7.1 Introduction
Chapter 6 describes the SEMI constraint system and how it is used to derive safe approxi-
mations to the value-point relation. That chapter assumes the existence of an algorithm for
deriving a closed set of constraints from a given initial set. In this chapter, I describe such
an algorithm, as implemented in Ajax’s SEMI analysis engine.

First I describe the basic algorithm, and then I present a series of improvements to the
algorithm that improve its performance. I also discuss some changes to the algorithm that
I tried and rejected because they decreased performance.

Finally, I discuss some changes to the constraint generation phase that simplify the initial
constraint set while leading to the same results.

7.1.1 Solver Specification
Given an initial constraint set CI, the job of the solver is simply to find a closed set C
containing CI.

CI represents constraints induced by the program under analysis. C represents an extension
of those constraints into a complete and consistent description of the “types” in the
program.

Note that such a C always exists. For example, given CI, we can add constraints making all
variables equal and making all component and instance relationships hold between all
variables. (The resulting set is finite because only the variables, component labels and
instance labels that occur in CI need be considered.) Effectively this gives all expressions
the same type. In practice this result would not be useful — it is preferable to retain distinc-
tions between types whenever possible. However, this example illustrates that implemen-
tations of the specification can trade off accuracy for performance.

7.1.2 Decidability and Performance
Henglein [42] shows that the problem of finding a principal (i.e., most general) type is
undecidable in the general setting of polymorphic recursion. However, in practice all
examples seem tractable. In fact, Henglein’s algorithm is reported to be quite efficient at
inferring types for functional programs.

SEMI is similar to Henglein’s algorithm and likewise has no guarantee of termination. (In
fact, because SEMI can infer recursive types, the situation is theoretically even more dire
than for Henglein’s algorithm: typable programs exist that have no principal types. See
Appendix A for details.) However, nonterminating cases have always been traced back to
errors in the solver implementation. Because the worst cases may not even terminate,

162

efficiency depends on the characteristics of “average case” programs. Therefore we must
measure performance and precision empirically.

In fact, the problem of finding a closed constraint set is not the same problem as finding
principal types. As noted above, there is no unique solution to the problem of finding a
closed set, and a trivial closed set can always be found.1 However, for the sake of precision
we want the analysis to distinguish types whenever possible, just as we do when inferring
principal types.

7.1.3 Refined Specification
The SEMI analysis engine extracts an approximate value-point relation from the closed set
C. This relation is the only function of C that is used. Therefore we can relax the specifi-
cation of the engine to allow it to produce any set C' that (for a given set Q of query expres-
sions) gives the same relation as that derived from a closed set C. I will call such a set C'
quasi-closed with respect to Q. This relaxation enables many optimizations.

The analysis engine actually computes a propagation graph from the constraint set and not
a direct approximation to the value-point relation (see Section 6.6.1). However, as shown
in Section 6.6, the results computed over the graph are completely determined by the
approximate value-point relation defined for the constraint set. Therefore if C' induces the
same approximate relation, the results obtained from the propagation graph on C' will be
be the same as the results for C’s graph.

From the definition of the approximate value-point relation in Section 6.5.1, the analysis
concludes H����H��LI�DQG�RQO\�LI

By the instance transitivity property (Lemma 6-7), this is equivalent to

Let M be a map from bytecode expressions to constraint variables, defined as
where . is defined for all expressions in the query set
Q; this is guaranteed by the precautions in Section 6.4.5. Then the analysis concludes
H� � H��LI�DQG�RQO\�LI

From these definitions, it follows that C' is quasi-closed if there exists a C such that

• C is closed

• C contains CI

• "W��Y�³�9DULDEOHV�&,��� �LQ�&�LI�DQG�RQO\�LI�
�LQ�C'�

1. For this reason, we could guarantee termination by timing out and falling back to an algorithm that is
guaranteed to terminate. SEMI does not do this, however; choosing a suitable timeout interval and selecting
an algorithm to fall back on appear to be rather complex problems.

X [1 [2 [1� [2�, , , , . H1 [1,() X [1�,()� H2 [2,() X [2�,()�¾$

X [1 [2, , . H1 [1,() X e,()� H2 [2,() X e,()�¾$

M H() X=
F X�, . H X� FÆ Ö� X� FÆ Ö X�¾$ M H()

X [1 [2, , . M H1() [1,() X e,()� M H2() [2,() X e,()�¾$

X [1 [2, , . W [1,() X e,()� Y [2,() X e,()�¾$
X [1 [2, , . W [1,() X e,()� Y [2,() X e,()�¾$

163

7.1.4 Basic Structure
This chapter describes a series of algorithms leading up to the full SEMI algorithm, each
more sophisticated than the last. All the algorithms commence with the initial constraint set
CI and add constraints to the set until it is closed (or quasi-closed).

Because the addition of new constraints to the set is a fundamental operation in the
algorithms, it is not difficult to extend these algorithms to be incremental. One can add to
the initial constraint set CI at any time and then continue to add derived constraints until
reaching (quasi-) closure.

7.2 Basic Algorithm
The basic algorithm presented in this section corresponds to Henglein’s type inference
procedure [42].

The general procedure is to start with a set of initial constraints (the input) and repeatedly
add constraints to the set until it reaches closed form (the output). This is complicated by
the fact that the initial constraint set can increase during processing, and the new constraints
can be observed by tools as soon as they are added (i.e., the results are reported incremen-
tally).

Therefore, in reality, the SEMI solver takes a set of constraints as input. If the set is already
in closed form, it reports termination, otherwise it adds some constraints to the set and
reports the changes in the output of the analysis. The added constraints are chosen to move
the set “closer” to closure; that is, if the constraint set output by one step is always used as
the input to the next step, the algorithm should terminate (although as discussed above, we
cannot guarantee that it will terminate).

7.2.1 Representation of Equality
Like every algorithm of this kind, the SEMI solver uses a representation of the constraint
set that avoids explicit equality constraints. Whenever a constraint of the form “ ” is
encountered or produced, it is discarded, and the solver substitutes b for a (or a for b) in all
other constraints. This can be implemented efficiently by treating each variable as an equiv-
alence class and employing the union-find algorithm to merge equivalence classes.

7.2.2 Functional Representation of Components and Instances
7KH�FRPSRQHQW�FRQVLVWHQF\�UXOH�JXDUDQWHHV�WKDW�IRU�D�JLYHQ�YDULDEOH�W�DQG�FRPSRQHQW�ODEHO�
F��WKHUH�LV�DW�PRVW�RQH�Y�VXFK�WKDW� ��DIWHU�WDNLQJ�LQWR�DFFRXQW�HTXLYDOHQFLHV���7KXV�WKH�
FRPSRQHQW�FRQVWUDLQWV�DUH�UHSUHVHQWHG�DV�D�FXUULHG�SDUWLDO�IXQFWLRQ�)

E
���9 � /V 9�

/LNHZLVH�WKH�LQVWDQFH�FRQVWUDLQWV�DUH�UHSUHVHQWHG�DV�))���9 � ,V 9�

,Q�WKH�LPSOHPHQWDWLRQ��HDFK�YDULDEOH�Y�KDV�WZR�KDVK�WDEOHV�DVVRFLDWHG�ZLWK�LW��RQH�UHSUH�
VHQWLQJ�)

E
�Y��DQG�WKH�RWKHU�))�Y��

:KHQ�D�YDULDEOH�Y�LV�VXEVWLWXWHG�IRU�X�EHFDXVH�X�DQG�Y�KDYH�EHHQ�PDGH�HTXDO��X¶V�/�V�9�
FRPSRQHQW�PDS�LV�PHUJHG�LQWR�Y¶V�/�V�9�FRPSRQHQW�PDS��7KH�WULFN\�SDUW�RI�WKLV�SURFHVV�
LV�WKDW�IRU�HDFK�O�LQ�WKH�LQWHUVHFWLRQ�RI�WKHLU�GRPDLQV��WKH�YDULDEOH�)

E
�X��O��LV�PDGH�HTXDO�WR�

D @ E

W EF Y

164

WKH�YDULDEOH�))�Y��O���WKXV��WKH�PHUJH�SURFHGXUH�FDQ�LQYRNH�LWVHOI�UHFXUVLYHO\��7KH�
SURFHGXUH�FRUUHVSRQGV�WR�WHUP�XQLILFDWLRQ�

7KH�DOJRULWKP�DOVR�PHUJHV�X¶V�,�V�9�LQVWDQFH�PDS�LQWR�Y¶V�,�V�9�LQVWDQFH�PDS��7KLV�LV�
VLPLODU�WR�WKH�FDVH�RI�WKH�FRPSRQHQW�PDSV��DQG�FDQ�DOVR�UHVXOW�LQ�UHFXUVLYH�PHUJH�FDOOV�

7.2.3 Component Propagation
The above normalization procedures ensure that the constraint set is always closed under
all rules except for the component and instance propagation rules.

We treat the remaining rules as production rules:

• Component propagation

8SRQ�GHWHFWLQJ�^�W�)L�X��W EF Y `�²�&�IRU�VRPH�W��X��Y��L�DQG�F��DGG�D�QHZ�YDULDEOH�Z�DQG�
FRQVWUDLQW�X�EF�Z��XQOHVV�WKHUH�LV�DOUHDG\�D�Z�VXFK�WKDW�X�EF�Z��

• Instance propagation

Upon detecting { t)i u, t Ec v, u Ec w } ² C for some t, u, v, w, i and c, add a constraint
v)i w (if not already present).

7KHVH�DUH�LPSOHPHQWHG�XVLQJ�D�ZRUNOLVW��7KH�DOJRULWKP�PDLQWDLQV�D�OLVW�RI�³GLUW\´�
FRPSRQHQW�FRQVWUDLQWV��H�J��³W EF Y´��WKDW�PXVW�EH�FKHFNHG�E\�WKH�FRPSRQHQW�SURSDJDWLRQ�
UXOH��$OO�FRPSRQHQW�FRQVWUDLQWV�LQ�&,�VWDUW�RII�LQ�WKH�GLUW\�OLVW��:KHQHYHU�D�QHZ�FRPSRQHQW�
FRQVWUDLQW�LV�DGGHG�WR�&,��LW�LV�DGGHG�WR�WKH�GLUW\�OLVW��:KHQHYHU�D�YDULDEOH�W�LV�VXEVWLWXWHG�IRU�
DQRWKHU�YDULDEOH�Z��DOO�WKH�FRPSRQHQWV�RI�W�WKDW�GR�QRW�DOUHDG\�DSSHDU�LQ�Z�DUH�PDGH�GLUW\��
DQG�OLNHZLVH�DOO�WKH�FRPSRQHQWV�RI�Z�WKDW�GR�QRW�DOUHDG\�DSSHDU�LQ�W�DUH�PDGH�GLUW\���
)RUPDOO\�

^�W EF Y�_�^�W EF Y�`�²�&�¾��¤$X��^�Z EF X�`�²�&��`�

^�Z EF Y�_�^�Z EF Y�`�²�&�¾��¤$X��^�W EF X�`�²�&��`

$OVR��ZKHQHYHU�DQ�LQVWDQFH�FRQVWUDLQW�W�)L�X�LV�DGGHG��DOO�WKH�FRPSRQHQWV�RI�W�DQG�X�DUH�
PDGH�GLUW\�

'XULQJ�HDFK�LWHUDWLRQ�RI�WKH�VROYHU��LW�SXOOV�RQH�GLUW\�FRPSRQHQW�FRQVWUDLQW�W EF Y�IURP�WKH�
GLUW\�OLVW��7KHQ�IRU�HDFK�X�DQG�L�VXFK�WKDW�^�W�)L�X�`�²�&��WKH�WZR�SURGXFWLRQ�UXOHV�DUH�
FKHFNHG��$OVR��IRU�HDFK�X�DQG�L�VXFK�WKDW�^�X�)L�W�`�²�&��WKH�VHFRQG�SURGXFWLRQ�UXOH�LV�
FKHFNHG��VZDSSLQJ�X�ZLWK�W�DQG�Y�ZLWK�Z so that the actual rule checked is

• Upon detecting { u)i t, u Ec w, t Ec v } ² C for some t, u, v, w, i and c, add a constraint
w)i v (if not already present).

Note that when checking this rule, since u and c are known, there can be at most one appli-
cable w.

Iteration continues until the worklist of dirty component constraints is empty. Upon termi-
nation, the constraint set is closed.

When an equality constraint is processed by applying a substitution to the entire constraint
set, the same substitution is applied to the elements of the worklist. Of course, this is done
efficiently using a union-find data structure.

165

7.2.4 Saving Time By Recording Additional Dirtiness Information
)RU�VRPH�YDULDEOHV�W�WKHUH�PD\�EH�PDQ\�X�VXFK�WKDW�W�)L�X�RU�X�)L�W��:KHQ�D�GLUW\�FRPSRQHQW�
W EF Y�LV�EHLQJ�SURFHVVHG��LW�FDQ�EH�VORZ�WR�VFDQ�DOO�WKH�LQVWDQFHV�X�VXFK�WKDW�W)L�X�DQG�DOO�
WKH�VRXUFHV�X�VXFK�WKDW�X�)L�W��7KHUHIRUH�IRU�HDFK�GLUW\�FRPSRQHQW�W EF Y��ZH�PDLQWDLQ�D�OLVW�
RI�DOO�WKH�W)L�X�DQG�X�)L�W�WKDW�QHHG�WR�EH�LQVSHFWHG�LQ�FRQMXQFWLRQ�ZLWK�WKH�W EF Y�FRQVWUDLQW��
)RU�HYHU\�VLWXDWLRQ�LQ�ZKLFK�D�FRPSRQHQW�FRQVWUDLQW�PD\�EHFRPH�GLUW\��WKHUH�LV�DQ�
DVVRFLDWHG�VHW�RI�LQVWDQFH�DQG�VRXUFH�FRQVWUDLQWV�WKDW�ZLOO�QHHG�WR�EH�LQVSHFWHG�

:KHQ�D�QHZ�FRPSRQHQW�FRQVWUDLQW�W EF Y�LV�DGGHG��DOO�FRQVWUDLQWV�RI�WKH�IRUP�W)L�X�DQG�
X)L W�QHHG�WR�EH�LQVSHFWHG�LQ�FRQMXQFWLRQ�ZLWK�W EF Y�

:KHQ�D�YDULDEOH�W�LV�VXEVWLWXWHG�IRU�YDULDEOH�Z��WKHQ�IRU�HDFK�W EF Y�VXFK�WKDW�̂ W EF Y�`�² &�
¾��¤$X��^�Z EF X�̀ �²�&���DOO�FRQVWUDLQWV�RI�WKH�IRUP�Z)L�X�DQG�X)L Z�QHHG�WR�EH�LQVSHFWHG�
LQ�FRQMXQFWLRQ�ZLWK�W EF Y��/LNHZLVH��IRU�HDFK�Z EF Y�VXFK�WKDW�^ Z EF Y�`�²�&�¾�
�¤$X� ^ W EF X�`�²�&���DOO�FRQVWUDLQWV�RI�WKH�IRUP�W)L�X�DQG�X)L W�QHHG�WR�EH�LQVSHFWHG�LQ�
FRQMXQFWLRQ�ZLWK�Z EF Y�

:KHQHYHU�DQ�LQVWDQFH�FRQVWUDLQW�W�)L�X�LV�DGGHG��WKHQ�IRU�HDFK�W EF Y�LQ�&��WKH�LQVWDQFH�
FRQVWUDLQW�W�)L�X�PXVW�EH�LQVSHFWHG�LQ�FRQMXQFWLRQ�ZLWK�W EF Y��$OVR��IRU�HDFK�X EF Y�LQ�&��WKH�
VRXUFH�FRQVWUDLQW�W�)L�X�PXVW�EH�LQVSHFWHG�LQ�FRQMXQFWLRQ�ZLWK�X EF Y�

This additional bookkeeping greatly improves runtime, while adding some space overhead.

7.2.5 Overview of an Algorithm Step
An iteration of the solver proceeds as follows:

1. Remove a dirty component constraint W EF Y�from the worklist, with its associated sets
of dirty source constraints S and dirty instance constraints I.

2. For each dirty source constraint X�)L�W�in S, we have ^ X�)L�W, W EF Y�`�²�&��(DFK�SURGXF�
WLRQ�UXOH�KDV�SUHPLVHV�RI�WKH�IRUP�3�²�&��)RU�HDFK�UXOH��DQG�IRU�HDFK�LQVWDQWLDWLRQ�RI�WKH�
IUHH�YDULDEOHV�RI�3�VXFK�WKDW�^ X�)L�W, W EF Y�`�²�3 and 3�²�&, SEMI applies the rule to
obtain a set of constraints that must be included in the new constraint set. Each new
constraint not already in the set is added and the dirty worklist is updated appropriately.

3. For each dirty instance constraint W�)L�X�in I, we have ^ W�)L�X, W EF Y�`�²�&��)RU�HDFK�
SURGXFWLRQ�UXOH��DQG�IRU�HDFK�LQVWDQWLDWLRQ�RI�WKH�IUHH�YDULDEOHV�RI�WKH�UXOH¶V�SUHPLVHV�3�
VXFK�WKDW�^ W�)L�X, W EF Y�`�²�3 and 3�²�&, SEMI applies the rule to obtain a set of con-
straints to add, as above.

For each rule, it is easy to determine the possible values of P given that ^ X�)L�W, W EF Y�`�²�
3 or ^ W�)L�X, W EF Y�`�²�3.

Consider the component propagation rule. P is of the form ̂ T�)L�U, T EF V `. When checking
dirty instances, we have ^ W�)L�X, W EF Y�`�²�3. The only possibility is 3� �^ W�)L�X, W EF Y `��
VR�WKH�FRQVHTXHQFH�RI�WKH�UXOH�LV� ��:KHQ�FKHFNLQJ�GLUW\�VRXUFHV��ZH�
KDYH�^ X�)L�W, W EF Y�`�²�3.�7KH�RQO\�SRVVLELOLW\�LV�3� �^ X�)L�W, W EF Y `��EXW�WKHQ�VLQFH�3�LV�
RI�WKH�IRUP�^ T�)L�U, T EF V `��ZH�PXVW�KDYH�X = W and 3� �^ W�)L�W, W EF Y `��,Q�WKLV�FDVH�WKH�
FRQVHTXHQFH�RI�WKH�UXOH�� ��LV�DOUHDG\�VDWLVILHG�ZLWK�Z� �Y��DQG�VR�WKLV�
FDVH�QHHG�QRW�EH�FKHFNHG�

Z . X EF Z{ } &²$

Z . W EF Z{ } &²$

166

Consider the instance propagation rule. 3 is of the form�^ T�)L�U, T EF V, r Ec z `��When
checking dirty instances, we have ^ W�)L�X, W EF Y�`�²�3. The only possibility is that 3� �
^ W)L X, W EF Y, u Ec z `�IRU�VRPH�]��6LQFH�X�DQG�F�DUH�NQRZQ��WKHUH�FDQ�RQO\�EH�RQH�SRVVLEOH�
YDOXH�IRU�Z�DQG�LW�FDQ�EH�IRXQG�E\�LQVSHFWLQJ�&��L�H���3�LV�FRPSOHWHO\�GHWHUPLQHG��:KHQ�
FKHFNLQJ�GLUW\�VRXUFHV��ZH�KDYH�^ X�)L�W, W EF Y�`�²�3�and WKH�RQO\�SRVVLELOLW\�LV�WKDW�3� �
^ X)L�W, u Ec s, W EF Y `�IRU�VRPH�V. Again X and F are known, so the value of V is determined.

Subsequent sections describe enhancements to the basic algorithm which introduce new
rules, but in each case it is just as easy to determine how the variables of the rules are to be
instantiated.

7.2.6 The Extended Occurs Check
It is easy to construct constraint sets for which this algorithm does not terminate.
Furthermore, these sets do arise in practice.

)RU�H[DPSOH��FRQVLGHU�WKH�VHW�̂ 7I EUHVXOW 7U� 7I)L 7U `��7KLV�FRXOG�DULVH�IURP�DQ�DQDO\VLV�RI�
WKH�IROORZLQJ�SURJUDP�

I���^�UHWXUQ�I��`

I¶V�UHVXOW�LV�DQ�LQVWDQFH�RI�I���7KLV�LV�D�FRQWULYHG�H[DPSOH��5HDO�H[DPSOHV�LQ�-DYD�DUH�PRUH�
FRPSOLFDWHG��H�J���D�PHWKRG�0�WKDW�UHWXUQV�D�UHIHUHQFH�WR�D�QHZ�REMHFW�ZKLFK�FRQWDLQV�0��

Suppose we apply the above algorithm to this constraint set:

• $SSO\�FRPSRQHQW�SURSDJDWLRQ�WR�^�7I EUHVXOW 7U� 7I)L 7U�`�
DGG�7��DQG�FRQVWUDLQW�^�7U�EUHVXOW 7��`

• $SSO\�LQVWDQFH�SURSDJDWLRQ�WR�^�7I EUHVXOW 7U� 7I)L 7U��7U�EUHVXOW 7��`�
DGG�FRQVWUDLQW�^�7U�)L 7��`

• $SSO\�FRPSRQHQW�SURSDJDWLRQ�WR�^�7U EUHVXOW 7�� 7U)L 7��`�
DGG�7��DQG�FRQVWUDLQW�^�7��EUHVXOW7��`

• $SSO\�LQVWDQFH�SURSDJDWLRQ�WR�^�7U EUHVXOW 7�� 7U)L 7���7��EUHVXOW 7��`�
DGG�FRQVWUDLQW�^�7��)L 7��`

• …

,Q�W\SH�LQIHUHQFH��WKH�W\SH�RI�I�ZRXOG�EH�DQ�LQILQLWH�WHUP�

YRLG����YRLG����YRLG � «��

This recursive type is not valid in Henglein’s scheme; therefore his algorithm detects this
situation and reports failure. He calls this detection the “extended occurs check”. (It is
analogous to the occurs check performed during term unification.) In terms of the SEMI
formalism, the extended occurs check fires whenever, for some sets of variables ti and ui:

^�W��)L��X���«��XQ���)LQ�XQ��W��EFRPS��W���«��WP�EFRPSQ�XQ�`�²�&

This means that the extended occurs check is applicable whenever we have a variable t1
with a transitive instance un which is also transitively a component of t1.

When the extended occurs check fires in SEMI, the solver simply forms a recursive type
by adding the constraint , and continues. In the example, the extended occurs check W1 @ XQ

167

detects the constraints ^�7I EUHVXOW 7U� 7I)L 7U�̀ and adds the constraint , halting the
expansion.

Note that adding this equality forces variables to be equal that do not necessarily need to be
equal according to the initial constraints. This is why SEMI does not compute a most
general (i.e., principal) solution. The demonstration of non-existence of principal types in
Appendix A is based on a similar example.

7KH�LPSOHPHQWDWLRQ�RI�WKH�6(0,�VROYHU�SHUIRUPV�DQ�H[WHQGHG�RFFXUV�FKHFN�ZKHQHYHU�WKH�
LQVWDQFH�SURSDJDWLRQ�UXOH�DGGV�D�QHZ�LQVWDQFH�FRQVWUDLQW�W�)L�X�WR�&��,W�VHWV�XQ��� �W��XQ X��
DQG�LQ� �L��DQG�WKHQ�VHDUFKHV�WKH�FRPSRQHQW�DQG�LQVWDQFH�JUDSKV�IRU�D�YDULDEOH�W��VDWLVI\LQJ�
WKH�FKHFN��$Q\�VXFK�YDULDEOHV�IRXQG�DUH�ERXQG�WR�X��7KH�VHDUFK�SURFHHGV�E\�ILUVW�VFDQQLQJ�
WKH�LQVWDQFH�JUDSK�EDFNZDUGV��ILQGLQJ�DOO�FDQGLGDWH�W�V�WKDW�DUH�WUDQVLWLYH�VRXUFHV�RI�W�
�LQFOXGLQJ�W�LWVHOI���DQG�IRU�HDFK�FDQGLGDWH��VFDQQLQJ�LWV�FRPSRQHQWV�WUDQVLWLYHO\�ORRNLQJ�IRU�
X�

This check could easily be changed from worst case O(N2) time, where N is the number of
variables, to O(N) time, simply by finding all transitive sources of t first, storing them in a
hashtable-based set, then scanning all of t’s transitive parents (variables that have t as a
transitive component) and testing for membership in the set. In practice, however, the
average numbers of transitive instances, sources, components or parents that a variable has
are all very large, and a check that is linear time in any of these quantities is prohibitively
expensive (since the extended occurs check is performed frequently). Therefore SEMI uses
a more complex approach, described below, which builds on the basic algorithm above. It
turns out that with the help of those optimizations, the worst case O(N2) version performs
significantly better.

7.2.7 Nondeterminism
The algorithm presented here is nondeterministic, as are all the following elaborations and
the implementation itself. There is always flexibility in choosing the order in which to
remove constraints from the worklist. Different orderings can lead to different results of the
algorithm, because the extended occurs check may fire at different times and induce
different equality constraints.

The implementation also produces non-deterministic results because it is written in Java,
and Java’s semantics does not fully define the behavior of the implementation. In
particular, the “identity hash code” of an object is not defined by the Java language speci-
fication. The identity hash code is returned by the default implementation of
2EMHFW�KDVK&RGH��; the only requirement is that it always return the same value for
any given object. When the same program is run multiple times on the same Java virtual
machine implementation, the identity hash codes assigned to its objects are often observed
to vary between runs. This leads to observable variations in behavior, because the enumer-
ation order of the elements of hash tables and related data structures depends on the values
of the identity hash codes.

In practice, Ajax almost always returns the same results for multiple runs of a given query.

Tr @ Tf

168

7.3 Optimizing the Occurs Check: Clusters
The naïve approach to performing the extended occurs check can be sped up by exploiting
the structure of constraints induced by a Java program (or any program that has layers in its
architecture, i.e., almost all programs).

7.3.1 Constraint Structure
SEMI generates instance constraints from a Java program in the following situations:

• A method body M1 makes a “static” call to another method M2 (M1 depends on M2).

• A method body M1 creates a new object of a class C (M1 depends on C).

• A method body M1 is installed in the dynamic dispatch table of a class C (C depends on
M1).

Due to the layered structure of most programs, the graph of dependencies is “mostly”
acyclic. (However, the JDK class library itself contains a number of surprisingly complex
cycles, so it is important to be able to handle cycles well.)

7.3.2 Clusters
Normally (i.e., in the absence of a cycle of mutually recursive dependencies), the variables
associated with parameters, local variables, results, and intermediate values within a given
method, and variables which are components of those variables, are related only by
component constraints. Instance constraints (and only instance constraints) relate these
variables to variables associated with other methods. Similarly, in a class there are variables
associated with the method slots, and a variable for the prototype object of the class, which
are related to each other by component constraints only. Instance constraints relate these
variables to variables in the methods that create objects of the class, and to variables in the
method bodies used by the class.

7KH�6(0,�VROYHU�H[SOLFLWO\�FDSWXUHV�WKLV�VWUXFWXUH��7KH�YDULDEOHV�DUH�SDUWLWLRQHG�LQWR�
DEVWUDFW�FOXVWHUV��WKH�SDUWLWLRQ�LV�ZULWWHQ�5���9 � ;��ZKHUH�;�LV�WKH�VHW�RI�FOXVWHU�ODEHOV���
7KH�RQO\�UHTXLUHG�SURSHUW\�RI�5�LV�WKDW�LI�W�EF�X�LV�D�FRQVWUDLQW��WKHQ�5�W�� �5�X���,Q�RWKHU�
ZRUGV��DOO�YDULDEOHV�UHODWHG�E\�RQO\�FRPSRQHQW�FRQVWUDLQWV�DUH�LQ�WKH�VDPH�FOXVWHU��
7\SLFDOO\��-DYD�SURJUDPV�JLYH�ULVH�WR�D�ODUJH�QXPEHU�RI�VPDOO�FOXVWHUV��RQH�FOXVWHU�SHU�
PHWKRG��

,W�LV�QRW�VWULFWO\�QHFHVVDU\�WR�KDYH�5�EH�WKH�PRVW�UHILQHG�SDUWLWLRQ�SRVVLEOH��EXW�WKDW�LV�HDV\�
WR�LPSOHPHQW�DQG�JLYHV�WKH�EHVW�UHVXOWV��7KDW�LV��LI�W�DQG�X�DUH�QRW�UHODWHG�E\�DQ\�FKDLQ�RI�
FRPSRQHQW�FRQVWUDLQWV��LJQRULQJ�GLUHFWLRQ��WKHQ�5�W����5�X��

The implementation maintains the cluster map dynamically, taking account of variable
merging and the introduction of new constraints.

7.3.3 Optimizing the Extended Occurs Check Using Clusters
7KH�FOXVWHU�PDS�LV�XVHG�WR�VKRUW�FLUFXLW�WKH�VXEURXWLQH�WKDW�FRPSXWHV�³,V�X�D�WUDQVLWLYH�
FRPSRQHQW�RI�W�"´�,I�5�X����5�W����WKHQ�WKH�UHVXOW�PXVW�EH�IDOVH��6LQFH�FOXVWHUV�DUH�JHQHUDOO\�
VPDOO�DQG�QXPHURXV��DQG�IROORZLQJ�DQ�LQVWDQFH�FRQVWUDLQW�XVXDOO\�OHDGV�WR�DQRWKHU�

169

�GLIIHUHQW��FOXVWHU��5�X����5�W���DOPRVW�DOZD\V�KROGV�GXULQJ�WKH�H[WHQGHG�RFFXUV�FKHFN�
VHDUFK�

7.3.4 Cluster Levels
Unfortunately, even scanning all transitive sources of a variable and performing a constant-
time check for each is too expensive, given the frequency with which extended occurs
checks are performed.

6(0,�UHVROYHV�WKLV�SUREOHP�E\�H[SOLFLWO\�FDSWXULQJ�WKH�³PRVWO\�DF\FOLF´�VWUXFWXUH�RI�WKH�
LQWHU�FOXVWHU�LQVWDQFH�JUDSK��7KH�LQVWDQFH�FRQVWUDLQWV�DUH�SURMHFWHG�RQWR�WKH�FOXVWHUV��L�H���
WKH�FOXVWHUV�DUH�DVVHPEOHG�LQWR�D�GLUHFWHG�JUDSK�*�VXFK�WKDW�IRU�HDFK�W�)L�X���5�W���5�X���LV�
DQ�HGJH�LQ�*��7KHQ�WKH�JUDSK�LV�SDUWLWLRQHG�LQWR�VWURQJO\�FRQQHFWHG�FRPSRQHQWV��FDOOHG�
FOXVWHU�OHYHOV��7KLV�SDUWLWLRQ�LV�ZULWWHQ�6���; � =��ZKHUH�=�LV�WKH�VHW�RI�FOXVWHU�OHYHO�ODEHOV��
%\�GHILQLWLRQ��*�SURMHFWHG�RQWR�FOXVWHU�OHYHOV�LV�DF\FOLF��H[FOXGLQJ�VHOI�ORRSV���7KH�IDFW�WKDW�
*�LWVHOI�LV�³PRVWO\�DF\FOLF´�PHDQV�WKDW�PRVW�FOXVWHU�OHYHOV�FRQWDLQ�MXVW�RQH�FOXVWHU�

The implementation maintains the cluster levels dynamically, as the underlying constraint
system changes. SEMI does this efficiently, but the implementation is tricky because
detecting cycles can be expensive. It is helpful to delay cycle detection until the cluster
levels are required to be in a consistent (acyclic) state (i.e., until the next extended occurs
check). SEMI maintains a “dirty” bit for each cluster level, indicating that it may be part of
a cycle of cluster levels because of the addition of new instance constraints incident to the
cluster level. When acyclicity is required, the algorithm performs a worst-case linear time
traversal of the cluster level graph — a depth-first search backwards along the instance
edges, starting from the dirty cluster levels. Any cycles found are recorded. Finally, the
cluster levels in each cycle are merged. It requires care to make sure that all cycles are
detected, since the straightforward depth-first search algorithm for cycle detection is only
guaranteed to find one cycle (assuming a cycle exists).

In SEMI, the cost of maintaining the cluster levels is usually negligible and never the
performance bottleneck.

7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels
The cluster level map is used to optimize the subroutine that scans the source graph for all
candidate t1s that are transitive sources of t.

7KH�H[WHQGHG�RFFXUV�FKHFN�VXEURXWLQH�UHFHLYHV�W�DQG�X�ZKHUH�X�LV�DQ�LQVWDQFH�RI�W��7KHUHIRUH�
HYHU\�FDQGLGDWH�W��KDV�X�DV�D�WUDQVLWLYH�LQVWDQFH��1RZ�VXSSRVH�IRU�VRPH�FDQGLGDWH�t1��
6�5�X�����6�5�W�����7KHUH�PXVW�EH�D�SDWK�IURP�6�5�W����WR�6�5�X���LQ�WKH�LQVWDQFH�JUDSK�
SURMHFWHG�RQWR�WKH�FOXVWHU�OHYHOV��EHFDXVH�WKHUH�LV�D�SDWK�IURP�W��WR�X�LQ�WKH�LQVWDQFH�JUDSK��
%HFDXVH�WKH�FOXVWHU�OHYHO�LQVWDQFH�JUDSK�LV�DF\FOLF��WKHUH�FDQQRW�EH�D�SDWK�IURP�6�5�X���WR�
6�5�W�����7KHUHIRUH��IRU�DOO�WUDQVLWLYH�VRXUFHV�V�RI�W���6�5�V�����6�5�X���DQG�WKHUHIRUH�
5�V� � 5�X���EHFDXVH�RWKHUZLVH�ZH�ZRXOG�KDYH�DQ�LQVWDQFH�SDWK�IURP�6�5�V��� �6�5�X���WR�
6�5�W����

7KHUHIRUH��ZKHQHYHU�WKH�H[WHQGHG�RFFXUV�FKHFN�VXEURXWLQH�GHWHFWV�6�5�X�����6�5�W�����W�¶V�
VRXUFHV�QHHG�QRW�EH�VHDUFKHG��,Q�SUDFWLFH�WKLV�SUXQHV�WKH�VHDUFK�WUHPHQGRXVO\��,Q�SDUWLFXODU��
LI�6�5�X�����6�5�W���WKHQ�QHLWKHU�W�QRU�LWV�VRXUFHV�QHHG�EH�FKHFNHG��WKH�HQWLUH�FKHFN�WDNHV�
FRQVWDQW�WLPH�

170

In the special case in which there are no recursive dependencies in the original program,
the instance graph projected onto clusters is acyclic, i.e., S is one-to-one. Then the extended
occurs check always completes in constant time. In other words, this optimization ensures
that the extended occurs check only incurs a cost (apart from the cost of maintaining the
clusters and cluster levels) when polymorphic recursion is actually being used.

7.3.6 Replacing the Extended Occurs Check with a Conservative
Approximation
,Q�WKH�FDVH�6�5�X��� �6�5�W����LQVWHDG�RI�SHUIRUPLQJ�WKH�UHVW�RI�WKH�H[WHQGHG�RFFXUV�FKHFN��
RQH�FRXOG�VLPSO\�DGG�WKH�HTXDOLW\�FRQVWUDLQW� ��7KH�QHZ�LQVWDQFH�FRQVWUDLQW�W�)L�X�LV�
UHGXFHG�WR�D�VHOI�ORRS�LQ�WKH�LQVWDQFH�JUDSK��ZKLFK�IRUHVWDOOV�WKH�QRQWHUPLQDWLQJ�EHKDYLRU�
WKDW�WKH�H[WHQGHG�RFFXUV�FKHFN�LV�GHVLJQHG�WR�SUHYHQW��7KLV�DSSURDFK�LV�VLPLODU�WR�WKH�
+LQGOH\�0LOQHU�DOJRULWKP��ZKLFK��LQWHUSUHWHG�LQ�WKLV�FRQWH[W��SURKLELWV�DQ\�SRO\PRUSKLVP�
FRQVWUDLQWV�ZLWKLQ�D�FOXVWHU�OHYHO��7KLV�EHKDYLRU�FDQ�OHDG�WR�VPDOOHU�FRQVWUDLQW�VHWV�EHFDXVH�
RI�WKH�³XQQHFHVVDU\´�HTXDOLWLHV�WKDW�DUH�LQWURGXFHG��ZKLFK�LPSURYHV�SHUIRUPDQFH�EXW�GRHV�
\LHOG�D�QRWLFHDEOH�GHFUHDVH�LQ�DFFXUDF\�IRU�VRPH�DSSOLFDWLRQV�RI�WKH�DQDO\VLV�

7.4 Scheduling the Worklist Using Cluster Levels
It turns out that the acyclic cluster level graph is useful for tasks other than optimizing the
extended occurs check.

7.4.1 The Scheduling Problem
Components propagate from sources to instances, but not the other way around. Therefore
as changes are made to constraints at the “bottom” of the instance graph, they tend to
“bubble up” to instances. It improves performance to do as much work as possible at the
bottom of the instance graph before making changes further up the graph, by reducing the
number of times each component is visited or examined.

7.4.2 Using Cluster Levels
$�FOXVWHU�OHYHO�O�LV�³GLUW\´�LI�WKHUH�LV�D�FRPSRQHQW�FRQVWUDLQW�LQ�WKH�ZRUNOLVW�RI�WKH�IRUP�
W EF X��ZKHUH�6�5�W��� �O�

:KHQHYHU�6(0,�FKRRVHV�D�FRPSRQHQW�FRQVWUDLQW�IURP�WKH�ZRUNOLVW��LW�FKRRVHV�D�FRQVWUDLQW�
W EF X�ZKHUH�WKH�FOXVWHU�OHYHO�6�5�W���KDV�QR�GLUW\�FOXVWHU�OHYHOV�EHORZ�LW�LQ�WKH�LQVWDQFH�
JUDSK�SURMHFWHG�RQWR�WKH�FOXVWHU�OHYHOV��6XFK�D�FRQVWUDLQW�LV�JXDUDQWHHG�WR�H[LVW�EHFDXVH�WKH�
FOXVWHU�OHYHO�LQVWDQFH�JUDSK�LV�DF\FOLF�

Making this choice efficiently is tricky, but requires negligible time and space in the SEMI
implementation. The dirty component constraints are stored on the worklist indexed by
cluster levels; the problem reduces to finding an appropriate cluster level to work on. SEMI
explicitly records the dirtiness of each cluster level. It also caches two facts in each cluster
level: whether it is known that there is at least one dirty cluster level below it in the cluster
level instance graph, and whether it is known that there are no dirty cluster levels below it
in the graph. In practice, this cache can be updated and invalidated efficiently in response
to changes in dirty state and changes in the underlying constraint set.

W @ X

171

The system keeps a list of dirty cluster levels, separated into two parts: the set of dirty
cluster levels that are known to have no dirty cluster levels below them on the projected
instance graph (the “ready list”), and the rest (the “blocked list”). When a constraint is
selected from the worklist, if the ready list is non-empty then a cluster level is chosen from
it and one of the cluster level’s dirty constraints is selected.

If the ready list is empty, then a cluster level l is chosen from the blocked list. The algorithm
performs a depth-first search of the cluster level instance graph, backwards from l, from
instances to sources. During this search, each visited cluster level is marked as either having
dirty cluster levels below it, or not. If not, then the visited cluster level is moved from the
blocked list to the ready list. The acyclicity of the cluster level instance graph guarantees
that after this procedure, at least one dirty cluster level will be found with no dirty cluster
levels below it (unless there are no dirty cluster levels left, in which case the algorithm
terminates).

7.5 Suppressing Components: Advertisements

7.5.1 Useless Component Propagation
6XSSRVH�)�LV�D�IXQFWLRQ�LQ�WKH�SURJUDP�IRU�ZKLFK�ZH�LQIHU�D�ODUJH�³W\SH´��7)��7KLV�PHDQV�
WKDW�7)�LV�WKH�URRW�RI�D�ODUJH�JUDSK�RI�FRPSRQHQW�FRQVWUDLQWV��$W�HYHU\�XVH�RI�)��D�GLUHFW�FDOO�
RU�WKH�XVH�RI�)�WR�ILOO�D�VORW�LQ�D�PHWKRG�WDEOH���D�QHZ�LQVWDQFH�L�RI�7)�LV�FUHDWHG��DQG�D�
FRQVWUDLQW�7)�)L�W�LV�DGGHG��7KH�FRPSRQHQW�SURSDJDWLRQ�UXOH�ZLOO�HIIHFWLYHO\�FRS\�WKH�
WUDQVLWLYH�FRPSRQHQWV�RI�7)��L�H���WKH�FRPSRQHQW�JUDSK�XQGHU�7)��WR�WKH�LQVWDQFH��2IWHQ��
KRZHYHU��PXFK�RI�WKLV�VWUXFWXUH�ZLOO�QRW�EH�XVHG��)RU�H[DPSOH��FRQVLGHU�WKLV�-DYD�FRGH�

)RR�[� �EDU���

SULQWOQ�[�NLWW\��

*LYHQ�WKH�FRGH�IRU�EDU��WKH�DQDO\VLV�PD\�ZRUN�RXW�VRPH�FRPSOH[�W\SH�VWUXFWXUH�IRU�LWV�
UHWXUQ�YDOXH��LQFOXGLQJ�LQIRUPDWLRQ�DERXW�WKH�YDULRXV�PHWKRGV�DQG�ILHOGV�RI�[��$OO�WKLV�
LQIRUPDWLRQ�ZLOO�EH�SURSDJDWHG�WR�WKH�FDOOHU��EXW�RQO\�RQH�ILHOG�LV�XVHG��DQG�WKHUHIRUH�WKH�
UHVW�RI�WKH�LQIRUPDWLRQ�LV�LUUHOHYDQW�

)XUWKHUPRUH��VXSSRVH�EDU�LV�LPSOHPHQWHG�DV�D�ZUDSSHU�

)RR�EDU���^�UHWXUQ�ED]�����`

Such constructs are common, and defeat purely local schemes for suppressing useless
structure.

7.5.2 Illustration
&RQVLGHU�WKH�FRQVWUDLQW�VHW�4�VKRZQ�LQ�)LJXUH �����7KLV�GLDJUDP�DQG�WKH�GLDJUDPV�WKDW�
IROORZ�UHSUHVHQW�FRQVWUDLQW�VHWV�DV�JUDSKV��1RGHV�FRUUHVSRQG�WR�YDULDEOHV��$�FRQVWUDLQW�RI�
WKH�IRUP�W�EF X�LV�GLVSOD\HG�DV�D�VROLG�HGJH�IURP�W¶V�QRGH�WR�X¶V�QRGH�ODEHOOHG�ZLWK�EF��$�
FRQVWUDLQW�RI�WKH�IRUP�W)L X�LV�GLVSOD\HG�DV�D�GRWWHG�HGJH�IURP�W¶V�QRGH�WR�X¶V�QRGH�ODEHOOHG�
ZLWK�)L�

172

T represents the type of some compound object with an instance i and further instances j
and k. Assume Q contains the initial constraint set, CI. The basic algorithm extends Q to the
closed set C shown in Figure 7-2�

The basic algorithm reaches C by copying T’s component tree to all the instances, and
connecting the components with instance relationships.

7.5.3 Quasi-closure Conditions
These new components are all unnecessary — Q is, in fact, quasi-closed. To see this,
consider two variables in CI, u and v. We must show that u and v are related in Q if and only
if they are related in C.

Figure 7-1. Initial constraint set

Figure 7-2. Closed constraint set

EF EG

EH EI EJ EK

)L

)M

)NT

EF EG

EH EI EJ EK

EF EG

EH EI EJ EK

EF EG

EH EI EJ EK

EF EG

EH EI EJ EK

)L

)M

)NT

173

The notation “X) Y” means that there is a chain of instance constraints from X to Y.

There are two cases:

• 6XSSRVH�X�DQG�Y�DUH�QRW�UHODWHG�LQ�&��7KHQ�½$[��X�)&�[�¾�Y�)&�[��,W�IROORZV�WKDW�
½$[� X)4�[�¾�Y�)4�[��VLQFH�&�LV�D�VXSHUVHW�RI�4��7KHUHIRUH�X�DQG�Y�DUH�QRW�UHODWHG�LQ�4�

• 6XSSRVH�X�DQG�Y�DUH�UHODWHG�DFFRUGLQJ�WR�&��7KHQ�$[��X�)&�[�¾�Y�)&�[��:H�VKRZ�WKDW�
$S� X)4�S�¾�Y�)4�S��E\�LQGXFWLRQ�RQ�WKH�OHQJWK�RI�WKH�VKRUWHVW�FKDLQ�RI�LQVWDQFHV�MXVW�
IL\LQJ�X)& [�
5HJDUGOHVV�RI�WKH�OHQJWK�RI�WKH�FKDLQ��LI�[�RFFXUV�LQ�4��WKHQ�X�)4�[�¾�Y�)4�[��VLQFH�WKH�
FKDLQV�RI�LQVWDQFHV�MXVWLI\LQJ�X�)&�[�DQG�Y�)&�[�DUH�DOVR�LQ�4���,Q�RWKHU�ZRUGV��HYHU\�
LQVWDQFH�FRQVWUDLQW�LQ�&�WKDW�KROGV�EHWZHHQ�YDULDEOHV�LQ�4�LV�LV�DOUHDG\�LQ�4���7KXV�WKH�
LQGXFWLRQ�K\SRWKHVLV�KROGV��VHWWLQJ�S� �[�
,I�WKH�OHQJWK�RI�WKH�FKDLQ�LV�]HUR��WKHQ�[� �X��KHQFH�[�LV�LQ�4�DQG�WKH�K\SRWKHVLV�KROGV�
,I�[�LV�QRW�LQ�4��WKHQ�LW�PXVW�EH�D�FKLOG�YDULDEOH�RI�RQH�RI�WKH�QHZ�FRPSRQHQW�FRQ�
VWUDLQWV��(DFK�VXFK�YDULDEOH�KDV�D�XQLTXH�SUHGHFHVVRU�3[�LQ�&�VXFK�WKDW�3[�)�[��7KH�
FKDLQV�X)&�[�DQG�Y�)&�[�PXVW�KDYH�OHQJWK�DW�OHDVW�RQH��VLQFH�[�LV�QRW�LQ�4�DQG�WKHUHIRUH�
GRHV�QRW�HTXDO�X�RU�Y��7KHUHIRUH�WKH�ODVW�OLQN�RI�HDFK�FKDLQ�PXVW�EH�3[�)�[��7KHUHIRUH��
X)&�3[�¾�Y�)&�3[�also holds��%\�WKH�LQGXFWLRQ�K\SRWKHVLV��$S� X)4 S�¾�Y�)4�S�

This argument can be generalized. A general set Q is quasi-closed over CI if:

1. Equalities have been eliminated from Q, and it is closed under the instance and compo-
nent consistency rules (guaranteed by my representation).

2. Q contains CI.

3. Q is closed under the instance propagation rule.

4.)RU�DOO�W��X��Y��F��[��\��LI�W�)4�X�¾�X�)4�Y�¾�^�W�EF�[��Y�EF�\�`�²�4��WKHQ�WKHUH�LV�D�Z�VXFK�
WKDW�^�X�EF�Z�`�²�4�

5.)RU�DOO�W��X��F��Y��LI�W�)4�X�¾�^�W�EF�Y�`�²�4�EXW�^�X�EF�Z�`�is not in�4�IRU�DQ\�Z��WKHQ�WKH�
VHW�^ [_ $M��Z��\��\�)4�X�¾�^�[�)M�\��[�EF�Z�`�²�4�¾�½�$]��^�\�EF�]�`�²�4��`� �^�W�`�

Conditions 1 and 2 are fundamental. Conditions 3 and 4 are required to justify the “x in Q”
part of the proof; they require Q to be closed except possibly for some unexpanded
instances of compound structures. Condition 5 is required to justify the “x not in Q” part of
the proof; it ensures that if a component c is not propagated to u, then there is a unique
instance-chain predecessor that has a real component that we can fall back to.

7.5.4 Advertisements
7KH�V\VWHP�UHDFKHV�WKLV�VWDWH�E\�SURSDJDWLQJ�FRPSRQHQWV�OD]LO\��:KHQ�WKH�FRPSRQHQW�
SURSDJDWLRQ�UXOH�ILUHV��LW�DFWXDOO\�SURSDJDWHV�DQ�DGYHUWLVHPHQW��UHSUHVHQWLQJ�WKH�SRVVLELOLW\�
RI�D�FRPSRQHQW�EHLQJ�SUHVHQW�LQ�WKH�LQVWDQFH��$Q�DGYHUWLVHPHQW�LV�D�SDLU��WKH�SDUHQW�
YDULDEOH��Y��DQG�D�FRPSRQHQW�ODEHO��F��ZULWWHQ�Y�FF��7KHVH�DGYHUWLVHPHQWV�DUH�SURSDJDWHG�
DORQJ�WKH�LQVWDQFH�JUDSK�XVLQJ�WZR�UXOHV�

• Advertisement propagation from component
8SRQ�GHWHFWLQJ�^�W�)L�X��W EF Y `�²�&�IRU�VRPH�W��X��Y��L�DQG�F��DGG�X FF�

174

• Advertisement propagation from advertisement
8SRQ�GHWHFWLQJ�^�W�)L�X��W FF `�²�&�IRU�VRPH�W��X��L�DQG�F��DGG�X FF�

If a variable t already has a component c, then it does not need an advertisement for the
same component.

• Redundant advertisement suppression
8SRQ�GHWHFWLQJ�^�W FF��W EF Y `�²�&�IRU�VRPH�W��Y�DQG�F��GHOHWH�W FF�

These rules replace the component propagation rule. They guarantee that quasi-closure
conditions 1, 2 and 3 hold upon termination.

7.5.5 Example
Consider Figure 7-3. Instead of copying T’s entire component tree, we have added adver-
tisements for T’s immediate components.

7.5.6 Ensuring Quasi-closure: Fill-in
To satisfy quasi-closure condition 4, the algorithm “fills in” an advertisement that has a real
component above it in the instance graph:

• Advertisement fill-in
8SRQ�GHWHFWLQJ�^�W�)L�X��W�FF��X EFZ `�²�&�IRU�VRPH�W��X�DQG�Z��DGG�W EF Y��ZKHUH�Y�LV�D�
IUHVK�YDULDEOH�

For example, consider the initial set shown in Figure 7-4.

SEMI adds an advertisement between T and U, as shown in Figure 7-5. The fill-in rule will
ensure that the advertisement is replaced with a real component, as shown in Figure 7-6.
The instance propagation rule will then ensure that the instance chain from Tc to Uc is
completed, as shown in Figure 7-7.

Figure 7-3. Use of advertisements

EF EG

EH EI EJ EK

)L

)M

)NT
FF FG

FF FG

FF FG

175

7.5.7 Ensuring Quasi-closure: Detecting Conflicting Sources
7R�VDWLVI\�TXDVL�FORVXUH�FRQGLWLRQ����HDFK�DGYHUWLVHPHQW�LV�DVVRFLDWHG�ZLWK�DQ�DGYHU�
WLVHPHQW�VRXUFH��V��WKDW�UHFRUGV�WKH�YDULDEOH�WKH�DGYHUWLVHPHQW�LV�GHULYHG�IURP��7KH�DGYHU�

Figure 7-4. Initial constraint set before fill-in

Figure 7-5. Advertisement constructed before fill-in

Figure 7-6. Advertisement replaced with component

Figure 7-7. After fill-in

EF

)L)M
T

EF

Tc

U

Uc

EF

)L)M
T

EF

Tc

U

Uc

FF

EF

)L)M
T

EF

Tc

U

Uc

EF

EF

)L)M
T

EF

Tc

U

Uc

EF

176

WLVHPHQW�LV�ZULWWHQ�W FF�>V@��4XDVL�FORVXUH�FRQGLWLRQ���EHFRPHV�WKH�³XQLTXH�VRXUFH�
FRQGLWLRQ´�

,I�WKH�DGYHUWLVHPHQW�X FF�>V@�H[LVWV��WKHQ

^�[�_�$M��Z��\��^�[�)M�\��\�)&�X��[�EF�Z�`�²�&�¾��"]��³\�EF�]´�´�&��`� �^�V�`�

The advertisement rules are extended:

• Advertisement propagation from component
8SRQ�GHWHFWLQJ�^�W�)L�X��W EF Y `�²�&�IRU�VRPH�W��X��Y��L�DQG�F��DGG�X FF�>W@�

• Advertisement propagation from advertisement
8SRQ�GHWHFWLQJ�^�W�)L�X��W FF >V@�`�²�&�IRU�VRPH�W��X��V��L�DQG�F��DGG�X FF�>V@�

• Redundant advertisement suppression
8SRQ�GHWHFWLQJ�^�W FF�>V@��W EF Y `�²�&�IRU�VRPH�W��Y��V�DQG�F��GHOHWH�W FF�>V@�

• Advertisement fill-in
8SRQ�GHWHFWLQJ�̂ �W�)L�X��W�FF�>V@��X EF Z `�²�&�IRU�VRPH�W��X��V�DQG�Z��DGG�W EF Y��ZKHUH�Y�
LV�D�IUHVK�YDULDEOH�

When a conflict arises — two advertisements for the same component show different
sources — we collapse the advertisements and make a real component.

• Conflicting advertisement detection
8SRQ�GHWHFWLQJ�^�W FF�>V@��W FF�>U@ `�²�&�IRU�VRPH�W��V��F�DQG�U��ZKHUH�U���V��FUHDWH�D�QHZ�
Z�DQG�DGG�W EF�Z�

This rule tests for the inequality of two variables. This can be tricky because variables can
become equal during the run of the algorithm, but in fact it only means that conflicts may
be detected that in the end may not be “true” conflicts. Since replacing an advertisement
with a real component is always a conservative operation (possibly hurting performance,
but never correctness), this is not a problem.

The conflicting advertisement rule guarantees that upon termination, the unique source
condition is satisfied.

7.5.8 Simple Example
For example, consider the CI in Figure 7-8.

7KH�DOJRULWKP�SURSDJDWHV�DGYHUWLVHPHQWV�IURP�8�DQG�7�WR�9��EXW�VLQFH�8���7��WKH�FRQIOLFW�
GHWHFWLRQ�UXOH�ILUHV�DQG�D�UHDO�FRPSRQHQW�LV�FUHDWHG�IRU�9��7KLV�LV�QHFHVVDU\�WR�PDNH�WKH�
UHVXOW�TXDVL�FORVHG�

7.5.9 Advertisement Source Updates
The conflicting advertisement detection rule alone is not satisfactory, however. Consider
the example in Figure 7-9.

Suppose the algorithm propagates an advertisement from T to V and then W, and then
propagates an advertisement from U to V. (This schedule might be chosen because of
additional constraints not shown.) Now at V there are conflicting advertisements, with
sources U and T. The algorithm creates a real component at V. The resulting state is shown

177

in Figure 7-10. Next the algorithm propagates an advertisement for that component to W.
Now there are conflicting advertisements at W, with sources T and V, so a new component
must also be created at W. This is suboptimal because W could simply have an adver-
tisement with source V.

To avert such situations, it suffices to destroy the advertisements that could be affected by
a new component; they will be regenerated with correct source information, if possible.

• Advertisement source update
8SRQ�GHWHFWLQJ�^�W FF�>V@��\�EF�]�̀ �²�&�IRU�VRPH�W��V��\��]�DQG�F��ZKHUH�V�)&�\��\�)&�W�DQG�
V � \��GHOHWH�³W FF�>V@´�

7.5.10 Implementation
Advertisement constraints are easily added by treating them as a degenerate kind of
component. Propagation and fill-in detection are implemented by allowing advertisements
as well as components to be on the dirty worklist. Conflicting advertisement detection is
straightforward to implement and is done eagerly.

Figure 7-8. Initial constraints leading to advertisement source conflict

Figure 7-9. Initial constraints requiring advertisement source update

EF

)L

)M

T

Tc

U

Uc

EF V

EF

)L

)M

T

Tc

U

Uc

EF V

W

)N

178

The advertisement source update is difficult to implement efficiently. The straightforward
implementation can destroy and recreate many advertisements each time a component is
added. SEMI uses an alternative representation for the source field of an advertisement. An
advertisement for c at t records a “bottleneck variable” v such that every instance chain
from the true source s to t passes through v. v may be s, or it may be some instance of s, in
which case v also has an advertisement for c (and its own bottleneck variable, etc). The true
source s for t can be found quickly; it is either v, or it is v’s true source. When v is not s,
components may be added along the path from s to v without having to update the infor-
mation cached in the advertisement at t.

7.6 Globals

7.6.1 Handling Program Global Variables
It is straightforward to encode a program’s global variables (“static fields” in Java) in the
constraint system presented. They can be treated as a single “globals” object with one field
for each variable, which is passed into each function as a parameter. However, this is not
very efficient because globals information must be copied into each method type. It is much
more efficient, and no less accurate, to have just one variable representing the globals
object and one copy of the information for the global variables. Lemma 6-21 shows that this
is no less accurate. The lemma states that the information inferred for the globals object in
any context is always the same.

7.6.2 Characterization of Constraints for Globals
,Q�WHUPV�RI�WKH�FRQVWUDLQWV��D�FRQVWUDLQW�YDULDEOH�Y�LQ�DQ�LQLWLDO�VHW�&,�FDQ�EH�VDLG�WR�EH�JOREDO�
LI��IRU�DOO�FORVHG�VHWV�&�FRQWDLQLQJ�&,��$J�"\��Y�)&�\�Ã�\�)&�J��7KLV�PHDQV�WKDW�WKHUH�LV�D�
³WRS�OHYHO´�FRQVWUDLQW�YDULDEOH�J�UHSUHVHQWLQJ�DOO�LQVWDQFHV�RI�WKH�JOREDO�GDWD��Lemma 6-21
shows that the constraint variables corresponding to static fields in the bytecode have this
property.

Figure 7-10. Initial constraints requiring advertisement source update

EF

)L

)M

T

Tc

U

Uc

EF V

W

)N

FF�>8@

EF

179

It is easy to see that an instance of a global constraint variable is also global. Furthermore,
a component of a global constraint variable is also global, because all instance chains
propagate down the component constraint.

6XSSRVH�WKDW�JOREDO�FRQVWUDLQW�YDULDEOHV�W�DQG�X�DUH�UHODWHG�DFFRUGLQJ�WR�WKH�935�DSSUR[L�
PDWLRQ�GHULYHG�IURP�D�TXDVL�FORVHG�FRQVWUDLQW�VHW��6HFWLRQ ��������7KHQ�$[� W)&�[�¾�X�)& [��
&KRRVH�J such that�"\��W�)&�\�Ã�\�)&�J.�7KHQ�[�)&�J, and therefore�X�)& J��7KLV�LPSOLHV�
WKDW�J�DQG�X�DUH�UHODWHG�DFFRUGLQJ�WR�WKH�935��7KXV��W¶V�JOREDO�UHSUHVHQWDWLYH�J�EHKDYHV�
LGHQWLFDOO\�WR�W�LQ�WKH�935��:H�FDQ�XQLI\�DOO�JOREDO�FRQVWUDLQW�YDULDEOHV�ZLWK�WKHLU�JOREDO�
UHSUHVHQWDWLYHV�ZLWKRXW�FKDQJLQJ�WKH�GHULYHG�935�

7.6.3 Implementation
SEMI marks constraint variables corresponding to static Java variables as global and gives
these constraint variables special treatment:

• ,I�W EF Y�DQG�W�LV�JOREDO�WKHQ�Y�LV�PDUNHG�JOREDO�

• When a global constraint variable is unified with another constraint variable, the result-
ing variable is marked global.

• ,I�W�)L�X�DQG�W�LV�JOREDO��WKHQ�WKH�DOJRULWKP�VHWV� �DQG�GHOHWHV�WKH�LQVWDQFH�FRQVWUDLQW��
7KLV�OHDGV�WR�X�EHLQJ�PDUNHG�JOREDO�

• *OREDO�YDULDEOHV�GR�QRW�EHORQJ�WR�DQ\�FOXVWHU�RU�FOXVWHU�OHYHO��7KH�FOXVWHU�LQYDULDQW�LV�
PRGLILHG�WR�³LI�W EF Y�DQG�Y�LV�QRW�JOREDO�WKHQ�W�DQG�Y�EHORQJ�WR�WKH�VDPH�FOXVWHU´��7KH�
VFKHGXOHU�NHHSV�D�VHSDUDWH�OLVW�RI�GLUW\�FRQVWUDLQWV�RQ�JOREDO�YDULDEOHV�DQG�DOZD\V�SUR�
FHVVHV�WKHP�ODVW��ZKHQ�QR�GLUW\�FOXVWHUV�DUH�DYDLODEOH�

7.6.4 Exceptions
SEMI encodes exceptions thrown by methods as auxiliary result components of method
types. In real Java programs, as far as SEMI can tell any exception thrown by a method may
propagate to the top level. (This is because catch clauses that catch all exceptions always
rethrow the caught exception, and in the case of selective catch clauses SEMI cannot distin-
guish between the exceptions that are caught and the exceptions that are not caught.) This
means that variables corresponding to thrown exceptions (or their components) satisfy the
same constraint property given above for variables corresponding to global data. Therefore
SEMI uses the “globalization” optimization for variables corresponding to thrown excep-
tions. This technique causes no loss of precision, and in practice the savings in space and
time are significant.

7.7 A Failed Optimization: Cut-throughs

7.7.1 Example
Consider the following program:

W @ X

180

)RR�I����^�UHWXUQ�QHZ�)RR����`
)RR�I����^�UHWXUQ�I�����`
)RR�I����^�UHWXUQ�I�����`
«�I����«

$Q\�QHFHVVDU\�FRPSRQHQWV�RI�WKH�QHZ�)RR�ZLOO�EH�SURSDJDWHG�WR�WKH�FDOO�VLWH�IRU�I���7KH�
YDULDEOHV�FRUUHVSRQGLQJ�WR�WKH�UHVXOWV�RI�I��DQG�I��ZLOO�DOVR�JHW�FRSLHV�RI�WKH�FRPSRQHQWV��
7KLV�LV�XQVDWLVI\LQJ�EHFDXVH�KDQGOLQJ�WKHVH�VHPDQWLFDOO\�PHDQLQJOHVV�OD\HUV�RI�DEVWUDFWLRQ�
FRXOG�H[DFW�D�VLJQLILFDQW�FRVW�LQ�WLPH�DQG�VSDFH�IRU�WKH�VROYHU�

7.7.2 Cut-throughs
,�DWWHPSWHG�WR�UHVROYH�WKLV�SUREOHP�E\�LQWURGXFLQJ�D�QRWLRQ�RI�D�³FXW�WKURXJK�LQVWDQFH´��D�
VLQJOH�LQVWDQFH�FRQVWUDLQW�WKDW�VXPPDUL]HV�D�FKDLQ�RI�LQVWDQFH�FRQVWUDLQWV��,Q�WKH�H[DPSOH��
D�VLQJOH�FXW�WKURXJK�LQVWDQFH�FRXOG�FRQQHFW�WKH�UHVXOW�RI�³QHZ�)RR´�ZLWK�WKH�UHVXOW�RI�I���
7KLV�PHDQW�WKDW�WKH�FRPSRQHQWV�RI�WKH�REMHFW�QHHG�QRW�EH�H[SDQGHG�LQ�WKH�UHVXOWV�RI�I��DQG�
I��

It was very difficult to implement. A large amount of bookkeeping was required to ensure
consistency, and it was tricky to implement efficiently. To make the implementation
tractable, I had to carefully restrict the circumstances in which cut-through edges could be
used. Unfortunately, experiments showed that on real examples cut-through instances were
hardly ever being used. I do not recommend introducing this style of optimization, and
SEMI does not perform it.

7.8 Reducing the Number of Initial Constraints

7.8.1 Dynamic Method Call Resolution
In SEMI, “virtual” method calls are usually more costly to treat than static method calls
because the inferred type of the method will often be copied into the types of many objects.
Therefore it is advantageous to apply a preprocessing step to reduce as many dynamic
method calls as possible to static ones. This is implemented in SEMI by allowing an Ajax
analysis to be specified as an optional parameter; SEMI will issue a query using this
analysis, and use the results to resolve as many dynamic method calls as possible.

For this strategy to be useful, the subordinate analysis should be significantly cheaper than
SEMI. My experiments use RTA++ for this purpose.

Ajax provides incremental updates to the results of an analysis. For a dynamic method call
resolution query, this means that a call site with multiple possible callees will initially be
reported as “dead” (callee set is empty), then reported as “statically resolvable” (callee set
is a singleton), and then reported as “unresolvable” (callee set has two or more elements).
Because SEMI does not support revocation of constraints, if it were to observe the “stati-
cally resolvable” state and immediately add appropriate constraints for static method
invocation, it would then not be able to revoke them if the state changed in the future to
indicate “unresolvable”. This would not harm correctness, but it would reduce accuracy. To
avoid this problem, the subordinate analysis is run to completion before SEMI uses its
results.

181

This technique also improves both performance and accuracy. Accuracy improves because
the statically resolved method call is treated polymorphically rather than monomorphically.

7.8.2 Lazy Method Slot Stuffing
The initial constraints install an instance of each method implementation’s signature into
the signature for each class C which uses that method implementation. The SEMI imple-
mentation delays installing such an instance until it has been determined that that class’s
method slot may actually be used, i.e., an LQYRNHYLUWXDO instruction calls the appro-
priate method on a class that is a superclass of (or equal to) C. Thus, nonstatic methods of
a class which are not actually called will usually not contribute to C’s inferred type infor-
mation; this vastly reduces the amount of work for SEMI.

The determination of which nonstatic methods may actually be called takes advantage of
the information recovered for dynamic method call resolution.

7.8.3 Instance Suppression
If a polymorphic value in the program has only one instance, one loses no accuracy by
treating it as if it were not polymorphic. Suppose the label for the instance is L. Then all
instance constraints labelled L can be replaced with equality constraints. This can greatly
reduce the number of variables and constraints in the system. This optimization is used in
the following situations:

• Instructions with only one predecessor in the control-flow graph for their method need
not be treated polymorphically. This provides a vast saving.

• Methods called from only one call site, where the callee is statically known, need not be
treated polymorphically. The information required to implement this is gathered in
much the same way as for dynamic method call resolution, discussed above.

• Classes created at only one site need not be treated polymorphically.

7.8.4 Disabling Intra-method Polymorphism
As mentioned in Section 6.3.8, control transfers within a method are modelled as function
calls, and instructions at control flow merge points can be treated as polymorphic functions
with multiple callers (one caller for each incoming control flow path). In practice, however,
allowing such instructions to be treated polymorphically provides little or no accuracy
benefit, and imposes a significant burden on performance. Therefore I have turned this
option off for all my experiments; all control transfers are treated non-polymorphically.

7.8.5 Structural Shortcuts
In the formal presentation, I have sets of variables for the stack (S), local variable file (L),
and global variable table (G). The former two sets of variables can be (and are) eliminated,
along with the component constraints binding them to particular stack and local variable
elements, by “pre-solving” those constraints. In the implementation this amounts to a form
of def-use analysis, and greatly reduces the number of constraints generated. (However,
since these constraints are always local to a method, the overall performance impact may
be limited.) This optimization is performed even when intra-method polymorphism is

182

enabled; in that case, the constraint generator “manually” adds the correct instance
constraints that would have been propagated from the constraints on the Ss and Ls.

The globalization optimization described above in Section 7.6 facilitates the removal of
explicit variables and constraints for the global variable table. Variables for individual
globals are resolved directly to their top-level variables, and no constraints involving the
Gs need be recorded.

7.9 Reducing the Number of Inferred Constraints

7.9.1 Component Partitioning
Consider a Java class C with a number of (possibly inherited) fields or methods, and a
constraint variable Y, which in some traces corresponds to objects of class C. The variable
Y may have a number of component constraints, as illustrated in Figure 7-11. Each
component constraint generates an advertisement at each instance.

Suppose we partition the fields of C. We then replace a direct component constraint for a
field with a pair of constraints, one identifying the partition, and one identifying the actual
field within the partition. Continuing the above example, suppose that there are two equal-
sized partitions. The result is shown in Figure 7-12.

If a single partitioning scheme is used consistently everywhere, the results obtained will be
identical to those obtained by the simple constraint system. As this example shows, the
partitioned component constraints may require fewer advertisements to be generated,
although more component constraints are required.

A simple and natural partitioning scheme is to have one partition for each Java class and
assign the component constraint for a field or method to the class in which that field or
method is declared. A more elaborate scheme would be to form a hierarchy of partitions
corresponding to the class hierarchy of the program.

Section 9.5.4 compares performance results for the different schemes. The simple parti-
tioning scheme is superior to the elaborate scheme, and is also superior to no partitioning.

Figure 7-11. Advertisement proliferation

Y

183

7.10 Suppressing Components: Modality

7.10.1 Example
Consider the following Java code:

)RR�[� �E�"�QHZ�%DU�����QHZ�%D]���

SULQWOQ�[�NLWW\��

7KH�DGYHUWLVHPHQW�DOJRULWKP�GRHV�QRW�SHUIRUP�ZHOO�RQ�WKLV�FRGH��&RQVLGHU�)LJXUH ������
6XSSRVH�7x�LV�WKH�FRQVWUDLQW�YDULDEOH�DVVRFLDWHG�ZLWK�[��)RU�HDFK�G\QDPLFDOO\�GLVSDWFKHG�
PHWKRG�P�GHILQHG�LQ�ERWK�FODVVHV�%DU�DQG�%D]��7[�ZLOO�JHW�WZR�DGYHUWLVHPHQWV�IRU�
FRPSRQHQW�P��RQH�IURP�%DU�DQG�RQH�IURP�%D]��,I�WKH�PHWKRG�LPSOHPHQWDWLRQV�DUH�
GLIIHUHQW��WKHQ�WKH�DGYHUWLVHPHQWV�ZLOO�KDYH�FRQIOLFWLQJ�VRXUFHV��VR�WKH�VWUXFWXUH�RI�WKH�
PHWKRG¶V�LQIHUUHG�W\SH�ZLOO�EH�H[SDQGHG��IRUPLQJ�WKH�XQLILFDWLRQ�RI�WKH�W\SHV�RI�%DU’s�P�
DQG�%D]¶V�P���7KLV�FDQ�UHVXOW�LQ�D�ODUJH�QXPEHU�RI�XQQHFHVVDU\�FRQVWUDLQWV�

7.10.2 Approach
6(0,�DQQRWDWHV�FRPSRQHQW�FRQVWUDLQWV�ZLWK�PRGH�LQIRUPDWLRQ�LQGLFDWLQJ�KRZ�WKDW�
FRPSRQHQW�LV�XVHG��$�FRPSRQHQW�FRQVWUDLQW�LV�ZULWWHQ�W�EF

��X��W�EF
F�X��W�EF

G�X��RU�W�EF
FG�X��

7KH�VXSHUVFULSW�³F´�PHDQV�WKDW�WKH�FRPSRQHQW�LV�XVHG�LQ�³FRQVWUXFWRU´�PRGH��7KH�VXSHU�
VFULSW�³G´�PHDQV�WKDW�WKH�FRPSRQHQW�LV�XVHG�LQ�³GHVWUXFWRU´�PRGH��7KH�VXSHUVFULSW�³�³�
PHDQV�WKDW�WKH�FRPSRQHQW�LV�QRW�XVHG�LQ�DQ\�PRGH��³FG´�PHDQV�WKDW�WKH�FRPSRQHQW�LV�XVHG�
LQ�ERWK�PRGHV�

The idea comes from the realm of functional languages. In that domain, component
constraints are associated with the use of type constructors, such as the arrow type for
functions. The type rules for these languages have two forms: one form that introduces a
new occurrence of the constructor (“constructor mode”), e.g., the “lambda” rule for
creating a new function, and another form that eliminates an occurrence of the constructor
and uses the components (“destructor mode”), e.g., the “app” rule for applying a function.
The intuition I rely on is that if a component is not used in both constructor and destructor
modes, then no useful information is transmitted through it. For example, if a function type

Figure 7-12. Advertisement proliferation averted

Y

184

is introduced through the “lambda” rule but is never subject to the “app” rule, then it does
not matter what its components are. Similarly, if there is an “app” with no corresponding
“lambda” then the components do not matter. (In this case, the code performing the appli-
cation must be dead.)

When SEMI gathers constraints from the original Java bytecode program, it adds mode
annotations to the component constraints as follows:

• Installing a method implementation into a new object type adds a component constraint
in constructor mode.

• Calling a virtual method in an object type adds a component constraint in destructor
mode.

• Writing a field of an object type adds a component constraint in constructor mode.

• Reading a field of an object type adds a component constraint in destructor mode.

• Calling a method adds parameter and result component constraints to the method type
in destructor mode.

• Declaring a method adds parameter and result component constraints to the method
type in constructor mode.

This mode information changes the interface to the solver and its specification. The
relevant change is in the definition of closure. The following parts of the definition of
closure are altered:

• &RPSRQHQW�SURSDJDWLRQ�UXOH
&RPSRQHQWV�SURSDJDWH�WKURXJK�LQVWDQFHV��ZLWK�QRQGHFUHDVLQJ�PRGHV��
^�W�)L�X��W�EF

P�Y�`�²�&�Ã�$Z��P
��^�X�EF
P
�Z�¾�P�²�P
�`�²�&

The benefit of modes is that we can safely inhibit some instance propagation.

Figure 7-13. Constraint Structures Leading to Excessive Merging

)L

)M

TBaz

TBar

EP

TxEargs Eresult

EP

Eargs Eresult

185

• ,QVWDQFH�SURSDJDWLRQ�UXOH
^�W�)L�X��W EF

P Y��X�EF
P¶�Z `�²�&�¾��$\��]��X�)&�\�¾�^�\ EF

FG]�`�²�&��Ã�^�Y�)L�Z�`�²�&
7KH�LQVWDQFH�FRQVWUDLQW�LV�RQO\�SURSDJDWHG�WR�WKH�FRPSRQHQW�LI�WKHUH�LV�VRPH�WUDQVLWLYH�
LQVWDQFH�RI�WKH�FRPSRQHQW�FRQVWUDLQW�WKDW�LV�XVHG�LQ�ERWK�FRQVWUXFWRU�DQG�GHVWUXFWRU�
PRGH��2WKHUZLVH�WKH�LQVWDQFH�FRQVWUDLQW�QHHG�QRW�EH�SURSDJDWHG�

7.10.3 Solver Rules
The solver rules given in previous sections remain in force. Rules that match a component
constraint match any mode annotation. Rules that add component constraints add
constraints with the “no mode” annotation. We introduce a separate rule to propagate
annotation information:

• 0RGH�SURSDJDWLRQ
8SRQ�GHWHFWLQJ�^�W�)L�X��W EF

P Y��X EF
P
Z `�²�&�IRU�VRPH�W��X��Y��L��F��Z��P�DQG�P
��

UHSODFH�³X EF
P
 Z´�ZLWK�³X EF

P��P
Z´�

• ,QVWDQFH�SURSDJDWLRQ
8SRQ�GHWHFWLQJ�^�W�)L�X��W EF

P Y��X�EF�Z `�²�&�IRU�VRPH�W��X��Y��Z��L��F��DQG�P�
LI�$\��]��X�)&�\�¾�\ EF

FG]��WKHQ�DGG�FRQVWUDLQW�Y�)L�Z��LI�QRW�DOUHDG\�SUHVHQW��

7.10.4 Example
The example above is transformed to the following:

7.10.5 Implementation
7KHVH�UXOHV�DUH�QRW�GLIILFXOW�WR�LPSOHPHQW��DQG�FRVW�YHU\�OLWWOH�LQ�WLPH�DQG�VSDFH��0RGH�
SURSDJDWLRQ�WDNHV�SODFH�DORQJ�ZLWK�WKH�RWKHU�ZRUN�RQ�HDFK�GLUW\�FRQVWUDLQW�IURP�WKH�
ZRUNOLVW��7KH�LQVWDQFH�SURSDJDWLRQ�FKHFN�LV�SHUIRUPHG�YHU\�HIILFLHQWO\�E\�WUDFNLQJ��IRU�HDFK�

Figure 7-14. Modal Annotations

)L

)M

TBaz

TBar

EP
c

TxEargs
c Eresult

c

EP
c

Eargs
c Eresult

c

EP
c

186

W EF Y��ZKHWKHU�WKHUH�LV�DQ�LQVWDQFH�RI�WKH�FRPSRQHQW�ZLWK�WKH�³FG´�DQQRWDWLRQ��WKLV�
³LQVWDQFH�PRGH´�LQIRUPDWLRQ�LV�SURSDJDWHG�IURP�LQVWDQFHV�WR�VRXUFHV�

7.10.6 Detecting Unused Fields
Suppose that F is a field of some class, and H is a bytecode expression, where in some traces
H evaluates to real objects, but none of those objects ever have the field F. Because SEMI
is sound, it will determine that the relation “H���H” holds. This means that SEMI has a
translation for H into some constraint variable X. Now consider checking the relation
“H.F � H.F”. SEMI will translate both occurrences of “H.F” into some constraint variable Y
such that X EF Y. SEMI will therefore conclude that “H.F � H.F” holds, even though it does
not hold in the true relation (because the assumptions indicate that “H.F” never evaluates to
any value). For some analyses, such as object modelling (see Chapter 11), it is important to
be able to detect that such fields are actually unused.

The SEMI solution is illustrated in Figure 7-15.

Suppose that we have two expressions H1 and H2, where H1 maps to constraint variable X and
H2 maps to constraint variable Y. The two expressions are related because X and Y have a
common instance W. However, instead of taking X and Y to be the constraint variables for the
expressions, I insert the “Q-d-constraints” indicated in boxes, and assign and as the
constraint variables for the expressions. Also, for each constraint variable NFODVV,' repre-
senting the prototypical object of each class, I insert the “Q-c-constraints” indicated in the
box. Q is a single predefined component and instance label.

Now if, in fact, H1 and H2 can both evaluate to a single real object, then the soundness of
SEMI guarantees that for some FODVV,' there will be a chain of instances leading from
NFODVV,' to the common instance W. Therefore W will have a component “W E4

FG�Z´�IRU�VRPH�
Z��DQG�LQVWDQFH�FKDLQV�ZLOO�EH�FUHDWHG�OHDGLQJ�IURP� to Z and from to Z. Therefore
SEMI’s analysis of the instance graph will deduce that H1 and H2 are related.

On the other hand, if H1 and H2 do not evaluate to any actual objects, then there may be no
such FODVV,' such that W is transitively an instance of NFODVV,'. In that case W will have the
component “W E4

G�Z´��L�H���WKH�FRQVWUXFWRU�PRGH�ZLOO�QRW�EH�SUHVHQW��7KHUHIRUH�LQVWDQFH�

Figure 7-15. Query widget

...

...

X

Y

E4
G

E4
G

)4

)4
X�

Y�

NFODVV,'

E4
F

)4 ...

W

X� Y�

X� Y�

187

FKDLQV�ZLOO�QRW�EH�FUHDWHG�OHDGLQJ�IURP� to Z or from to Z, and SEMI will not deduce
that H1 and H2 are related.

7.11 Nondeterministic Virtual Method Calls
A large contributor to the size of the constraint sets is the presence of structures corre-
sponding to “method types” in the signatures of objects. This is a direct consequence of the
way SEMI encodes virtually-invoked methods: as first-class functions carried in the slots
of objects. The burden of having method types in object signatures can be eliminated by
encoding each virtual method call as a nondeterministic call to one of the possible callees
for that call site. The set of callees at each call site can be determined by some simpler
algorithm (e.g., RTA++).

This transformation effectively reduces the program to first-order code, and allows Ajax to
handle significantly larger examples. Of course, the penalty is that the analysis results may
be of lower quality because higher-order control flow is not tracked as effectively. On the
other hand, accuracy can improve for some examples, because at each virtual call site we
can use a fresh polymorphic instance of the type of the callee. In the standard mode,
because the callee is extracted from a slot of an object passed in as a parameter, its type
cannot be used polymorphically. In practice we find that accuracy does decrease somewhat.
The effects are quantified in Chapter 9.

Ajax does not actually generate transformed representations of programs. SEMI is
configured with an arbitrary “preparatory” analysis, and then issues queries against the
perparatory analysis to compute the sets of possible callees at each call site.

7.12 Future Work and Related Work
Each of these optimizations (except for cut-throughs) made significant improvements to the
performance of Ajax. However, there are additional possibilities for optimizing the system.�
)RU�H[DPSOH��WKHUH�VHHP�WR�EH�IXUWKHU�RSSRUWXQLWLHV�WR�UHGXFH�VSDFH�E\�LPSOLFLWO\�UHSUH�
VHQWLQJ�VRPH�LQVWDQFH�FRPSRQHQW�FRQVWUDLQWV�DQG�UHFRQVWUXFWLQJ�WKHP�RQ�GHPDQG��
+RZHYHU��6(0,�DOUHDG\�VHHPV�WRR�FRPSOH[��DQG�WKH�JHQHUDOLW\�RI�WKH�FRQVWUDLQW�V\VWHP�
VHHPV�WR�VORZ�LW�GRZQ��HVSHFLDOO\�FRPSDUHG�WR�QRQ�FRQVWUDLQW�EDVHG�SRO\PRUSKLF�W\SH�
LQIHUHQFH�V\VWHPV�>��@�>��@��,W�UHPDLQV�XQFOHDU�ZKLFK�VWUDWHJLHV�RIIHU�WKH�EHVW�RSSRUWXQLWLHV�
IRU�IXWXUH�SHUIRUPDQFH�LPSURYHPHQWV�

Other researchers [31] have described how to improve the accuracy of this kind of analysis
by labelling polymorphic instance constraints as “positive” and/or “negative”, encoding a
simple kind of directionality information. For example, function results are instantiated
with “positive” instance constraints, and function arguments are instantiated with
“negative” instance constraints. This feature could easily be added to SEMI.

The SEMI algorithm is superficially similar to other analysis engines based on
polymorphic recursion [31], since they are all based on Henglein’s algorithm. However,
SEMI is the only engine that attempts to combine polymorphic recursion with handling of
structures with multiple fields. The presence of types with a high degree of “fan-out” in
their representation graphs motivates many of the improvements to SEMI.

X� Y�

188

189

8 Analyzing The Inscrutable

8.1 Introduction
This chapter discusses several features of Java that pose fundamental problems to practical,
sound, whole-program static analysis, and presents Ajax’s strategies for dealing with them:

• Foreign and unknown code

• Reflection and serialization

• The Java 6WULQJ “constant pool”

8.2 Foreign and Unknown Code

8.2.1 Foreign Code
One goal of Ajax is to produce sound results: The results of an analysis must account for
all possible runtime behaviors of the program. I have described methods for such analysis
of programs which are completely described by Java bytecode. However, all real Java
programs depend on the behavior of components that are not described by Java code. For
example, the standard Java class library depends on “native code” libraries for some of its
functionality.

In many languages and environments foreign code is essentially subservient, providing
support to the main system but influencing it only in limited ways. For example, all realistic
languages provide input and output routines. However, the effects of simple routines like
“print a string” and “read a string” are easily accounted for: “print a string” can be ignored,
and “read a string” can be treated as code that creates a String object and fills it with an
unknown number of unknown characters.

In Java, interaction between foreign code and Java code is much richer. Foreign code in
standard libraries such as the Abstract Window Toolkit modifies Java-visible data
(including variables holding object references, affecting aliasing), calls Java methods, and
creates new Java objects. If these behaviors are ignored, then some of the program’s live
methods will appear to be dead, and some of the program’s instantiated classes will appear
not to be instantiated.

Foreign code also initializes the Java environment and transfers control to the Java program
in an appropriate state. This code can be complex for programs packaged as “applets” or
“servlets”.

190

8.2.2 Unknown Code
The question of how to handle “foreign code” generalizes immediately to the question of
how to handle “unknown code,” which may be foreign or may simply be Java code that is
inaccessible to the analysis. For example, some tasks require that an application be
analyzed independently of the implementation of the Java libraries. One such task is
stripping dead code from an application being packaged for execution on multiple different
Java virtual machines, each with its own implementation of the standard libraries [79].

Ajax requires access to all Java bytecode for a program. The solutions that I discuss in this
chapter are only applied to foreign code. However, the techniques and most of the
discussion are certainly applicable to unknown code and modular analysis in general.

8.2.3 Possible Approaches
One approach is simply to make “worst case” assumptions about foreign code. Unfortu-
nately, foreign code is almost all-powerful in Java. Most foreign code interacts with the
Java virtual machine through the prescribed “Java Native Interface”, but that interface
allows the code to do almost anything. Some foreign code bypasses JNI and accesses Java
program state directly. Therefore, if one makes worst case assumptions about the behavior
of foreign code, little can be known about the behavior of Java programs.

Another approach is to make pessimistic assumptions about foreign code, tempered with
“realistic” assumptions limiting the code’s behavior. For example, we may assume that the
foreign code used by the standard Java libraries has no knowledge of user application code,
and will therefore not create application objects, modify the state of such objects or directly
call methods on those objects. However, this assumption does not help us analyze the
standard Java libraries. It is also possible for applications to pass knowledge — such as the
names of application classes and methods — down into the standard libraries, that can then
be used to violate assumptions about reasonableness.

The latter approach is feasible, but very conservative, making it difficult to evaluate the
effectiveness of the actual analysis engines and Ajax tools. Therefore I have taken a third
approach: manual specification of the behavior of all foreign code.

8.3 Salamis: A Specification Language for Foreign Code

8.3.1 The Need For A Separate Specification Language
One way to specify foreign code is to write a Java bytecode “dummy implementation” of
each foreign subroutine. My previous system, Lackwit, took this approach of writing
dummy implementations in C. This has the advantage of requiring little or no work on the
part of the analysis implementor, and providing a familiar language to the specification
writer.

Experience with Lackwit revealed a serious problem with this approach: it is difficult to
write dummy implementations, because it is unclear which implementation details are
relevant to the analysis and which are not. This is true even when the specification writer
is the same person who implemented the analysis. Use of multiple complex analyses
exacerbates the problem.

191

Therefore I created a dedicated specification language for foreign code, called Salamis1.
Salamis has limited expressivity; for example, there is no arithmetic, and conditional
branches are completely nondeterministic. The specification writer is forced to abstract
away from details which are irrelevant to most large scale analyses.

To reduce the effort required for parsing and analysis, I made the language as simple as
possible.

8.3.2 Example and Overview
Consider the Java code fragment in Figure 8-1.

Suppose the programmer wishes to find code that modifies her)LOH'HVFULSWRU object.
The)LOH'HVFULSWRU is modified by the native method)LOH,QSXW6WUHDP�RSHQ,
but this knowledge is only available in native code specifications.

Figure 8-2 shows some code from the standard library code specification that defines the
behavior of the native method RSHQ in the class MDYD�LR�)LOH,QSXW6WUHDP.

Each block delimited by braces defines a Salamis function. Each Salamis function either
defines a native method with a fully qualified method name, such as

1. “Salamis” is the name of the island on which Ajax is said to have been buried.

���
)LOH'HVFULSWRU�P\)'� �QHZ�)LOH'HVFULSWRU���
���
)LOH,QSXW6WUHDP�VWUHDP� �QHZ�)LOH,QSXW6WUHDP�P\)'��
VWUHDP�RSHQ���
���

Figure 8-1. Application code using using native methods

BVWULQJFRQVW���^
����UHWXUQ� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
`
PDNH,2([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�LR�,2([FHSWLRQ�
����MDYD�LR�,2([FHSWLRQ��LQLW!�(;1��
����MDYD�LR�,2([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�LR�)LOH,QSXW6WUHDP�RSHQ�7+,6��1$0(��^
����)'� �7+,6�MDYD�LR�)LOH,QSXW6WUHDP�IG�
����1(:B26B)'� �FKRRVH�
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:B26B)'�
����WKURZ� �PDNH,2([FHSWLRQ���
`

Figure 8-2. Specification for MDYD�LR�)LOH,QSXW6WUHDP�RSHQ

192

“MDYD�LR�)LOH,QSXW6WUHDP�RSHQ”, or defines an internal function, such as
“PDNH,2([FHSWLRQ”, to be used by other specifications.

Statements within blocks are delimited by semicolons. Each statement evaluates a simple
expression, with the result optionally assigned to some local variable (using the syntax
“A = B”).

The expression “)'� �7+,6�MDYD�LR�)LOH,QSXW6WUHDP�IG” reads the contents
of the IG field declared in MDYD�LR�)LOH,QSXW6WUHDP from the object referred to by
7+,6, and stores the resulting reference in local variable)'. Note that in Salamis all “this”
parameters are explicit. There is no syntactic distinction between static and non-static
methods. Note also that all method and field names are fully qualified with the name of
their class; this avoids the need to have any static type information associated with Salamis
local variables.

The statement “1(:B26B)'� �FKRRVH�” creates an undetermined scalar value and
stores it in the local variable 1(:B26B)'. This statement models the retrieval of some
unknown file descriptor value from the operating system.

The statement “)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:B26B)'�” stores the
value of 1(:B26B)' into the IG field of the object referenced by)'. Syntactically, this
is actually an “store expression” that is not assigned into any local variable. Note that the
IG field here is different to the field read above. Also note that writing “)'�
MDYD�LR�)LOH'HVFULSWRU�IG�� �FKRRVH�” directly would be syntactically
invalid, because every statement has exactly one expression.

The constructor of)LOH,QSXW6WUHDP called in Figure 8-1 internally sets the stream’s
IG field to P\)'. Static analysis then reveals that P\)'’s own IG field can be modified
by the call to)LOH,QSXW6WUHDP�RSHQ. This information is reported to the
programmer.

8.3.3 Salamis Syntax
The grammar of Salamis is presented in Figure 8-3. Apart from the literal strings shown in
the grammer, the only tokens are Identifiers and quoted Strings.

The core of the language is the expressions:

• Object creation, e.g.,
QHZ�MDYD�LR�,2([FHSWLRQ

The object constructor must be called explicitly in a separate statement.

• Nondeterministic choice, e.g.,
FKRRVH�(;1

The result of the expression is chosen nondeterministically from the comma-separated
list of operands. In this example there is only one operand, so the expression simply
evaluates to the value of (;1. If the list is empty, then the result is a fresh, unknown
scalar value.

193

• Object field access, e.g.,
7+,6�MDYD�LR�)LOH,QSXW6WUHDP�IG

This expression extracts the value of the named field from the object referred to by the
operand. The first operand is omitted if and only if the field is static.

• Object field assignment, e.g.,
)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:B26B)'

The value of the field is set to the second operand. The first operand is omitted if and
only if the field is static.

• Method call, e.g.,
MDYD�LR�,2([FHSWLRQ��LQLW!�(;1�

The named method is called with the provided parameters. If the method is VWDWLF,
SULYDWH, a constructor (method named �LQLW!), or ILQDO, then a static method
call is used, otherwise a dynamic method call is used. The result of the expression is the
value returned by the method, if any.
An optional quoted string is allowed. This string contains the Java type signature of the
method to call, in Java bytecode format (e.g., ��>&�9� for a method taking an array of
characters and returning void). Using this signature, Salamis can unambiguously call
overloaded methods. Note that the JVM requires native methods to be uniquely named,
so there is no need to define overloaded methods in Salamis.

CompilationUnit::=Function*

Function ::= Name � Identifiers � ^ Statement `

Name ::= Identifier
| Identifier � Name
| Identifier � Name

Identifiers ::= Identifier
| Identifier � Identifiers

Statement ::= Label? JRWR Identifiers �
| Label? Definition? Expression �

Label ::= Identifier �

Definition ::= Identifier

Expression ::= QHZ Name
| FKRRVH Identifiers?
| Identifier? Name
| Identifier? Name � Identifier
| Name � Identifiers? � String?
| FDWFK � Name? � Identifiers

Figure 8-3. Salamis grammar

194

• Salamis function call, e.g.,
BVWULQJFRQVW��

This is syntactically the same as a method call, but no class name is present in the
method name. All Salamis function calls are static (i.e., Salamis functions are not first-
class).

• Exception catching, e.g.,
%<7(� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG%\WH�7+,6��
FDWFK��MDYD�ODQJ�7KURZDEOH��%<7(
This expression catches exceptions which are subclasses of 7KURZDEOH and thrown
by the statement assigning %<7(. The result of the expression is any caught exception.
If not caught, exceptions are not propagated through Salamis code; they are simply
ignored. Therefore exceptions must be explicitly propagated from callee to caller. If no
class bound is given, all exceptions are caught.

• There is one kind of statement that is not an expression: “goto”, e.g.,
JRWR�%��6��&��,��-��=��)��'��/
Control is transferred to one of the labelled statements. Statements are labelled by
prepending them with the label name and a colon.

8.3.4 Other Salamis Features
The value of the special local variable “return” is returned by each function or method. The
value of the local variable “throw” is the thrown exception, if any. Salamis specifications
do not specify whether an exception is thrown or the method (or function) returns normally.

Every statement that does not assign to a local variable is conditional; it may or may not
actually execute. Therefore in PDNH,2([FHSWLRQ, it is unspecified whether one, both,
or none of the ,2([FHSWLRQ constructors (methods named �LQLW!) are executed.

Sometimes it is necessary to associate values with objects that do not belong in the fields
declared for the object in Java. One example is the lengths of arrays. For such cases,
Salamis supports synthetic “specification only” fields (called “spec fields”). Static spec
fields are also supported, e.g., MDYD�ODQJ�6WULQJ�LQWHUQVWU above refers to the
global spec variable “internstr”. This fields are not declared anywhere; conceptually, they
are simply created as needed when accessed.

All updates to object fields in Salamis are treated as conditional; The previous value of the
field may persist. Thus many of the Salamis specifications use a single object reference in
a spec field to refer to a whole collection of objects. For example,
MDYD�ODQJ�6WULQJ�LQWHUQVWU refers to one of the entire collection of interned string
objects; whether there is one or many is irrelevant to any analysis, because the semantics
of Salamis are the same in either case.

Array accesses are treated by identifying the elements of an array object with special spec
fields of the object, depending on the type of the array: �LQWDUUD\HOHPHQW,
�ORQJDUUD\HOHPHQW, �IORDWDUUD\HOHPHQW, �GRXEOHDUUD\HOHPHQW, and
�DUUD\HOHPHQW (for arrays of object references). Arrays of bytes, shorts, and characters
have their contents mapped to �LQWDUUD\HOHPHQW.

195

Sometimes it is necessary to refer to the names of array classes. These are given the internal
Java Virtual Machine names (e.g., >, for an array of integers, >/MDYD�ODQJ�2EMHFW�
for an array of objects).

8.3.5 Implementation
Salamis code is compiled into Java data structures by a simple front end. The data structures
are then serialized into “specification resources” that are located and loaded by Ajax at
analysis time.

When an analysis encounters live foreign code, it looks up the specification and then
analyzes the specification directly. In other words, all analyses have to be able to analyze
Java code and also Salamis specifications. In practice this is not too difficult, although it is
rather cumbersome and leads to some duplication of code.

This approach also requires the language of bytecode expressions to be extended to include
Salamis variables. Tools also have to be extended to scan Salamis specifications as well as
Java bytecode.

8.4 Salamis Specifications
Appendix B presents the Salamis specifications for the portion of the JVM class library
used by my examples.

8.4.1 Omissions
The specifications cover only the foreign code exercised by my test applications, which
includes the example applications for my thesis plus some other applications. Also, they
specify the code used by only the Windows implementation of the Sun JDK 1.1. Other JDK
versions and implementations on other platforms use different Java libraries, which rely on
different foreign code, and may therefore need different Salamis specifications. Even given
these limitations, there are over 2,500 lines of specifications covering such complex areas
as the Java Abstract Window Toolkit, which manages the interaction between Java and the
underlying Windows graphical user interface toolkit.

There are a few places where it is impossible or undesirable to specify the foreign code
adequately. The most important such area is the reflection services, which are discussed
below.

8.4.2 Risks
The behavior of foreign code used by the Java libraries is difficult to deduce. Much of it is
internal to the library implementation, and much of the rest is under-documented. I have
proceeded by reverse-engineering the Java library bytecode, and by observing the behavior
of the Java Virtual Machine. This approach is difficult and error-prone. Even with access
to the JVM source code, this task would still be difficult; the JVM and its libraries are large
and complicated pieces of code.

It is impossible in principle to rigorously prove that the specifications actually match the
behavior of the foreign code. In practice it is also difficult to test for conformance. My
testing consisted of running live code analyses using the specifications and comparing the

196

results to profile data gathered by running the example programs in the JVM; profiled
methods that are declared dead by the analysis clearly indicate bugs, either in the specifi-
cations or the analysis itself. I found many incomplete specifications this way. However, it
is difficult to achieve high confidence in the completeness of the specifications.

8.4.3 Handling Strings
One quirk in the semantics of the JVM shows up in the specification of certain 6WULQJ
methods. The JVM maintains a set of 6WULQJ objects called “interned 6WULQJs”: at
runtime, each possible string of characters has at most one corresponding “interned
6WULQJ” object. When a JVM instruction accesses a string constant, it returns a reference
to the interned 6WULQJ for that string of characters. Also, it is possible to obtain the
interned 6WULQJ for an arbitary string, by calling the method 6WULQJ�LQWHUQ��. This
facility is provided to save space, and to allow interned 6WULQJs to be compared for string
equality merely be comparing the object references.

The unfortunate result in Ajax is that every object reference that could refer to a 6WULQJ
constant must be related in the VPR to every other object reference that could refer to a
6WULQJ constant. I model this behavior faithfully in order to satisfy the definition of the
VPR. Furthermore, some programs can depend on it in practice, for example when object
references are compared. This is why the Salamis example above gets 6WULQJ constants
from the global �LQWHUQVWU spec field. The bytecode instructions that fetch references
to 6WULQJ constants also get the reference from this field. In many cases it would make
sense to relax this behavior and support unsound handling of Strings.

8.4.4 Other Areas Of Interest
The Salamis code for VXQ�DZW�ZLQGRZV�:7RRONLW�HYHQW/RRS is particularly
interesting. This method runs indefinitely on a special AWT thread, pulling events from the
Windows event queue and processing them. It responds to the native Windows events by
calling methods on Java “peer” objects associated with each underlying Windows interface
object. If the callbacks are not modelled correctly, then the peer object methods appear
never to be invoked, and large chunks of a program’s code may never be triggered.

Much of the Salamis code is devoted to ensuring that appropriate exceptions are potentially
thrown by each method. Also, there is a special function BPDJLFH[Q, which returns one
of the exceptions which may be raised at any time by the Java Virtual Machine (e.g.,
9LUWXDO0DFKLQH(UURU). This function is used by the analyses to ensure that code
which can catch such exceptions is handled soundly; the result of this function is added to
the set of objects which may be caught by the code. The BPDJLFH[Q function also
includes exceptions for run-time errors that can occur so commonly that they might as well
be thrown anywhere, such as $UUD\,QGH[2XW2I%RXQGV([FHSWLRQ,
1XOO3RLQWHU([FHSWLRQ and &ODVV&DVW([FHSWLRQ. (These are the exceptions
belonging to the set ErrorClassIDs in the MJBC language; see Section 3.2.5.) This results
in no loss of accuracy with the existing Ajax analyses, because they do not accurately
capture which exceptions can be thrown by which methods.

197

8.5 Reflection And Serialization

8.5.1 Introduction
An especially interesting application of foreign code is the standard Java reflection library.
It allows programs to query and manipulate the elements of a Java program at run time. For
example, a program can obtain, as a string, the name of the class of any object. Conversely,
given the name of a class as a string, it can create an object of the class. It can obtain a list
of the names of the fields and methods of an object, and other information about those
members. It can even call the methods and modify the fields by name.

Reflection is extremely powerful and useful, and it is widely used by real programs. Many
important Java programming paradigms depend on it (for example, Java Beans). Unfortu-
nately, it is almost completely impervious to static analysis.

A specialized form of reflection is Java serialization — a facility for storing and retrieving
object structures from a byte stream. Serialization uses reflection to traverse the contents of
objects without requiring the user to write traversal code for each class.

8.5.2 The Reflection Services
Reflection is not an esoteric feature used by just a few applications. In fact, the Java
libraries themselves depend on it. For example, the Sun JDK library reads the name of the
current locale from a text file, prepends it with the string
VXQ�LR�&KDU7R%\WH&RQYHUWHU, and then loads the class with that name and creates
an object of the class.

Many applications, including some of the applications I chose for my benchmark suite, also
depend on reflection internally. (The benchmark applications are described in the next
chapter, in Section 9.2.2.) For example, the Ladybug specification checker tool [44] has a
user interface shell wrapped around an abstract formula solution engine. The UI shell
accesses the engine through a Java interface, and has no compile-time dependence on any
particular implementation of the interface. At run time, Ladybug uses reflection to load the
engine class by name and create an object of that class. The object is downcast into a
reference to the engine interface, and can then be used by the user interface shell. This
pattern of using reflection to break compile-time dependencies is quite common.

Another interesting use of reflection is in the Jess expert system shell [35]. Jess interprets
rule sets, which are essentially programs. These programs can contain directives to create
and manipulate Java objects; these directives are interpreted by Jess by simply passing
them down to the Java reflection API (along with some wrapping and unwrapping between
Java object references and Jess data). By this simple mechanism, the full power of the Java
platform is available to Jess programs. Clearly, static analysis of Jess alone in the presence
of these directives is no longer possible; one would have to analyze Jess in combination
with the Jess rules being interpreted. When I use Jess as one of my example programs for
this thesis, I assume that these particular directives are not used.

Of course, Java’s original source of popularity was that it can dynamically load and run
code from arbitrary sources. This ability depends on the use of reflection. It also requires

198

the use of ClassLoaders, but ClassLoaders do not present any real problems for Ajax above
and beyond the difficulties of reflection.

Another, rather obscure, use of reflection is built into the Java compiler. The Java language
construct &ODVV1DPH�FODVV obtains the metaclass &ODVV object for the class named
“&ODVV1DPH”. The Sun Java compiler implements this feature by compiling in a call to
&ODVV�IRU1DPH�³&ODVV1DPH´�, along with some caching of the return value to
speed up cases where the expression is evaluated frequently.

8.5.3 Reflection Specifications
Ajax allows the programmer to manually provide specifications describing how a program
uses reflection, e.g., which classes it can create instances of and which methods it can call
using the reflection API. Appendix C gives the actual specifications used in the experi-
ments.

Reflection specifications describe a set of UHIOHFWLYH�PHWKRGV, the methods that perform
reflection operations. For each reflective method, the specifications list the caller methods,
and for each caller, the specifications enumerate the classes, methods or fields it may access
through the callee reflection method. For example, consider Figure 8-4.

Figure 8-4 specifies that &RQVWUXFWRU�QHZ,QVWDQFH is reflective. (This method creates
a new object using a constructor chosen at run time.) The specification states that there are
only two callers of this reflective method. The first caller, KDQGOH&RPPDQG&DOOEDFN,
only uses the method to create objects of classes whose fully qualified names start with
“MDYDILJ�FRPPDQGV�” The second caller uses it only to create objects of class
MDYD�LR�3ULQW6WUHDP. Note that once again every class, method and field name is fully
qualified with the declaring class name and package.

This specification format has two advantages. Ajax can check during analysis that every
caller to a reflective method is actually listed in the specifications, and issue warnings when
unknown callers are found. This is an essential aid to locating all uses of reflection in a
program. Also, the usage of reflection can be computed based on the methods that Ajax
finds to be live; dead code that uses reflection does not impact the analysis. This means that
one specification file can describe the reflection behavior of the Java libraries and a set of
user applications. The only other analysis system with documented support for reflection
specifications, Jax [79], only allows the programmer to specify one list of methods and
classes accessed via reflection, and does not allow the programmer to specify which
program methods perform reflective actions; thus it does not have these advantages.

MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�QHZ,QVWDQFH�>
����MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH&RPPDQG&DOOEDFN�^
��������FODVV MDYDILJ�FRPPDQGV�
����`
����DMD[�WRROV�EHQFKPDUNV�*HQHUDO%HQFKPDUN�PDNH3ULQW6LQN6WUHDP�^
��������FODVV MDYD�LR�3ULQW6WUHDP
����`
@

Figure 8-4. Sample reflection specification

199

Another advantage of this format is that wrappers around reflective methods can be added
to the specifications as a new reflective method. This allows its callers to be easily located
and reported by Ajax.

Ajax has a separate mechanism to handle the compiler generated use of &ODVV�IRU1DPH
discussed above. During analysis, it detects when &ODVV�IRU1DPH is called with a
constant string parameter, and adds the named class to the list of classes which are
reflected. Therefore uses of the &ODVV1DPH�FODVV expression do not need to be listed
in the reflection specifications.

8.5.4 Reflection Specification Syntax
The syntax is very simple. The example above demonstrates almost all the syntactic
features of the language. A reflective method can have an arbitrary number of callees, and
each callee can specify an arbitrary number of “reflection targets”. A reflective method and
its callees are specified as fully qualified method names; if disambiguation of overloaded
methods is required, the method name can be extended with a list of parameter types and
quoted as a string. The grammar is given in Figure 8-5. As for Salamis, the tokens are the
literal strings occuring in the grammer, plus Identifiers and quoted Strings.

ReflectionSpec::= ReflectiveMethod*

ReflectiveMethod::=MethodName ^ Caller* `

MethodName::= Name
| String

Name ::= Identifier
| Identifier � Name

Caller ::= Name ^ ReflectionTarget* `

ReflectionTarget::=TargetType TargetSpec

TargetType ::= FODVV
| ILHOG
| PHWKRG
| VHULDOL]HG

TargetSpec ::= WildcardName
| WildcardName � Name

WildcardName::= Name
| Name �?
| �? Name

Figure 8-5. Reflection specification grammar

200

Reflection targets identify the classes, methods or fields that may be referenced by the
reflective operation. There are four kinds of reflection targets:

• Classes

• Methods

• Fields

• Serialized Classes

None of the examples I have analyzed use field reflection.

The “serialized class” targets are used to specify which classes of objects may be read from
storage using the 2EMHFW,QSXW6WUHDP deserialization machinery. If a class is a
“serialized class” target, then instances of that class may be returned from calls to
2EMHFW,QSXW6WUHDP�UHDG2EMHFW. The 2EMHFW,QSXW6WUHDP constructor is
treated as a reflective method; callers of the constructor specify which classes they will
deserialize using the stream. Strictly speaking the constructor is not a reflective method,
because objects are not deserialized and created until UHDG2EMHFW is called on the
stream. However it is more helpful to identify creators of object input streams than readers
of objects from those streams.

The language supports two shorthand ways to specify reflection targets, corresponding to
ways that reflection is frequently used in practice:

• Wildcard names, e.g.,
MDYDILJ�FRPPDQGV�

This means any class (or method) whose fully qualified name starts with
“MDYDILJ�FRPPDQGV�” Wildcards need not be in trailing positions, e.g.,
“�+DQGOHU” is allowed. Ajax searches through all the available classes, methods or
fields to find the ones whose names match the pattern. These patterns are very useful
because programs often prepend or append some constant string to a variable before
passing a name to the reflection API.

• Interface constraints, e.g.,
MHVV��MHVV�7HVW
This means any class matching the pattern “MHVV�” which implements the named
interface MHVV�7HVW. This is also very useful because programs creating objects via
reflection usually require those objects to satisfy some known interface.

Serialized class targets undergo additional processing. Every serialized class target must
implement the MDYD�LR�6HULDOL]DEOH interface, or it will be ignored. Also, for
every field of a serialized class which is not marked WUDQVLHQW, the field’s declared class
is added as a serialized class target. (This is because Java serialization automatically
serializes such fields.) Similarly, if an array class is serialized, then the array content class
is also serialized.

8.5.5 Creating The Specifications
Writing reflection specifications requires some reverse engineering of the reflection-using
code. I used a combination of dynamic and static methods. I ran the example programs and
noted which classes were loaded and which methods were called. I also examined the

201

bytecode (and source code, when available) and determined which classes and methods
could be accessed.

The specifications I produced use two simplifications to reduce the number of possible
classes that may be loaded. First, the character set locale name is assumed to be “Cp1252”,
the Windows Latin character set. Secondly, the locale is assumed to be US English. If all
available character sets and locales are allowed, the very large amount of code loaded to
support them totally dominates the size of my example programs, and most configurations
of SEMI are quite impractical.

8.5.6 Using Reflection Specifications
Reflective methods ultimately depend on foreign code. (The reflective methods that appear
in the Java library are actually wrappers around foreign methods that do the real work.) I
have written Salamis specifications for those foreign methods that take care of mundane
aspects such as throwing exceptions, and delegate the essential reflective operations to a
special set of foreign functions. These functions are:

• 5HIOHFWLRQ+DQGOHUBPDNH2EMHFW$QG&DOO=HUR$UJ&RQVWUXFWRU
Creates an instance of some reflected class with a constructor that takes no arguments,
and invokes that constructor on the object.

• 5HIOHFWLRQ+DQGOHUBPDNH2EMHFW$QG&DOO$UELWUDU\&RQVWUXFWRU
Creates an instance of some reflected class and invokes one of the constructors on the
object; the parameters to the constructor are passed to this function as an array.

• 5HIOHFWLRQ+DQGOHUBFDOO$UELWUDU\0HWKRG
Calls a reflected method on some object. The parameters are passed into this function
as an array.

• 5HIOHFWLRQ+DQGOHUBPDNH6HULDOL]HG2EMHFW
Creates an instance of a serialized non-array class. No constructor is invoked.

• 5HIOHFWLRQ+DQGOHUBPDNH6HULDOL]HG$UUD\
Creates an instance of a serialized array class.

• 5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG
This is actually a family of functions, one per primitive type and one for 2EMHFW.
Given an object and a value of the appropriate type, it sets one of the serialized fields of
the object to the given value.

• 5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG
This is actually a family of functions, one per primitive type and one for 2EMHFW.
Given an object, it returns the value of one of the serialized fields of the object with the
appropriate type.

• 5HIOHFWLRQ+DQGOHUBLQYRNHBUHDG2EMHFW
Given an object which has a SULYDWH UHDG2EMHFW method implementing custom
serialization behavior, this function calls that method on the object.

202

• 5HIOHFWLRQ+DQGOHUBLQYRNHBZULWH2EMHFW
Given an object which has a SULYDWH ZULWH2EMHFW method implementing custom
serialization behavior, this function calls that method on the object.

Since none of my examples use reflection to modify object fields (other than for serial-
ization), I did not build support for that functionality.

These functions cannot be specified statically in Salamis code because they depend on
knowing the set of reflected classes, methods, and serialized classes. Instead, their specifi-
cations are generated dynamically. As analysis progresses and live methods are discovered,
they are looked up in the reflection specification. Any induced reflected classes, methods
or serialized classes are added to a global list of reflected entities. Whenever this list is
updated, Ajax generates new specifications for the primitive reflection functions. (Ajax
analyses support code mutation, so they can handle changes in the specifications even if the
reflection functions have already been analyzed.)

8.6 Conclusions
Java programs have rich interactions with their environment. These interactions must be
modelled accurately to achieve sound and accurate analysis. Unfortunately, this is very
difficult to do; the details of the environment are inaccessible, incomprehensible, and
subject to change. Even worse, the environment provides reflection facilities allowing Java
programs to modify their own behavior in ways that are opaque to static analysis.

Ajax addresses these concerns by providing ways to specify the environment and a
program’s reflective behavior. These mechanisms work, but they can be laborious for both
the tool implementor and user. More seriously, any attempt to specify the environment and
reflective behavior seems doomed to be fragile, for the reasons explained above.

Although these concerns can be tightly constrained or eliminated in some domains (e.g.,
embedded systems), general purpose systems design is moving in the direction of more of
these kinds of problems. Distributed systems, dynamism and introspection are increasingly
likely to be the norm. Even embedded systems are increasingly likely to be attached to
networks and to exhibit these features — for example, the Jini “smart devices” framework
depends on them. Static analysis cannot ignore this challenge.

203

9 Performance

9.1 Introduction
This chapter describes the resource consumption and accuracy of the basic analyses
RTA++ and SEMI for some simple applications: resolving virtual method calls and identi-
fying each program’s live code. The focus is on measured performance rather than
theoretical estimates or bounds, because performance depends crucially on the character-
istics of the programs being analyzed.

The results report accuracy in terms of application metrics (e.g., the number of virtual call
sites successfully resolved to a single callee). Metrics internal to an analysis algorithm (e.g.,
the average size of points-to sets) can be useful for diagnosing the behavior of a particular
algorithm, but are not as useful for comparing different analysis algorithms.

Before I describe the performance of the algorithms, I describe the suite of example
programs and the test setup. It is difficult to measure the sizes of the programs, partly
because it is difficult to describe precisely what code constitutes each program. This is
interesting because it also makes whole-program static analysis hard.

One goal of this thesis was to test the scalability of SEMI-style analysis applied to Java
programs. My results show that treating methods as functions passed around in records
imposes a significant penalty, and prevents the largest examples from being treated within
the resource limits I have set. However, this treatment can handle some large and inter-
esting programs, including the Ajax system itself with all the libraries on which it depends.

Ajax has many tunable parameters that can alter the accuracy and resource consumption of
the sytem. In my results here, and in subsequent chapters, I focus on proving or disproving
specific hypotheses rather than attempting to characterize completely the performance of
the system in all possible configurations.

9.2 Benchmark Environment

9.2.1 System
Table 9-1 gives the specifications of the machine running the test.

9.2.2 Benchmark Examples
I use a suite of ten benchmark programs, described in Table 9-2. Each program is analyzed
in conjunction with the libraries provided in Sun’s JDK 1.1.7. These programs cover a
range of sizes and programming styles.

204

Table 9-3 records the program sizes. Measuring the size of a program in this context is
perplexing. The first difficulty is that only four of the programs — Ajax, CTAS, Jess and
Java2HTML — come with complete source code, so measures such as “lines of code” are
inapplicable.

More seriously, for each example, the code actually analyzed is neither a superset nor a
subset of the code comprising the “application.” (By “application,” I mean a body of code
that one downloads and installs as a unit.) In most cases the analyzed code is much larger
than the application code, because Ajax analyzes all libraries on which the application
depends, as well as the application itself. On the other hand, Ajax only analyzes the code
that it detects to be live. Some applications, such as Ajax and JavaFIG, consist of several
independently runnable programs; therefore, whichever program is analyzed, a significant
amount of the application code falls outside the program. For Jar, JavaP and JavaC there is
no clear boundary between the application and the JDK libraries, and the separation into
application and library code is somewhat arbitrary.

CPU 500MHz Pentium II

RAM 256MB

Swap Space 600MB

Java VM Sun JDK 1.3.0, Hotspot Client VM

Java Heap Size 192MB

Operating System Windows NT 4.0, Service Pack 5
Table 9-1. Environment specifications

Program Name Description

Ajax The downcast checking tool of my analysis system

CTAS The Connection Manager for a prototype air traffic control system,
in a test harness, from Daniel Jackson’s group at MIT [43]

Jar The JAR compressed archive manager from Sun’s JDK 1.1.7

Java2HTML Converts Java source code to pretty HTML, from Rustan Leino at
DEC/Compaq SRC

JavaC The Java source-to-bytecode compiler from Sun’s JDK 1.1.7

JavaCC The Java Compiler Compiler from Sun Labs, version 0.8pre1
(similar to Yacc)

JavaFIG The JavaFIG 1.3.4 drawing editor from Universitaet Hamburg

JavaP The Java bytecode disassembler supplied with Sun’s JDK 1.1.7

Jess Java Expert System Shell version 4.4, from Sandia National Labs
[35]

Ladybug The Ladybug specification checker, by Craig Damon at CMU [44]
Table 9-2. The example programs

205

Some features of the example programs skew these statistics. Ajax and JavaCC contain
JavaCC-generated code, although Ajax’s generated code is not actually analyzed. Ladybug
contains code generated by a different parser generator, JavaCUP. Thus, the characteristics
of these programs are partly determined by the design of the parser generator. These
characteristics may be different to the characteristics of “handwritten” code, but it is
important and interesting to examine both handwritten and machine generated code.

Another problem is that static “class initializer” methods are often unlike other methods in
the program. The Java bytecode format has no way to represent an initialized array;
therefore all constant arrays are constructed at run time within the class’ static initializer.
Usually at least five bytes of bytecode instructions are required per array element. Thus,
many class initializer methods are huge compared to other methods, and in some programs
they dominate the overall bytecode instruction count. All results in this thesis exclude static
class initializer methods from statistics about methods. In particular, the method counts and
bytecode byte counts in Table 9-3 exclude static class initializer methods. This does mean
that some legitimate code is excluded from the reports, but it improves the meaningfulness
of the results overall. These omissions are only in the reporting of results — the analyses
take the behavior of the static class initializers fully into account.

In Table 9-3, the “Total Live Classes” number is simply the number of classes containing
at least one method body which Ajax determines to be live. The “Total Live Methods”
records the number of method bodies determined to be live (excluding static class initial-
izers), and the “Total Live Bytecode Bytes” is the sum of the sizes of those methods. Here
the set of live methods was computed using the “RTA++” analysis. (Other analyses
compute smaller sets of live methods.)

JavaFIG and Ladybug are the only two applications that use the AWT user interface library,
and that library accounts for much of the code that is pulled in from outside the application.

Name App.
Source
Lines

App.
Classes

App.
Methods

App.
Bytecode
Bytes

Total Live
Classes

Total Live
Methods

Total Live
Bytecode
Bytes

Ajax 45,086 505 3,145 171,237 537 3,463 197,398

CTAS 6,909 60 365 17,350 283 1,527 86,523

Jar N/A 8 85 6,142 304 1,752 104,979

Java2HTML 543 5 32 2,498 101 388 12,316

JavaC N/A 122 948 68,859 417 2,817 192,528

JavaCC N/A 134 1,975 250,653 161 1,322 170,741

JavaFIG N/A 175 2,139 170,655 496 3,902 250,725

JavaP N/A 58 577 52,215 143 705 32,026

Jess 36,366 173 821 51,468 383 1,854 110,526

Ladybug ~57,000 389 3,109 238,755 731 5,277 346,491
Table 9-3. Size statistics for the example programs

206

Figure 9-1 shows the size of each example program, as the number of live methods. Figures
9-2 and 9-3 show that the number of live methods is a reasonably good measure of program
size, being well correlated with the number of classes and number of bytes of bytecode
instructions for each program. This correlation is improved by the fact that the programs
share a great deal of code (the JDK libraries).

Figure 9-4 shows that, considering only code outside the JDK library, the correlation
between bytecode bytes and number of methods is still nearly linear, except that Ajax has
unusually small methods and JavaCC has unusually large ones.

Figure 9-5 shows that for application code, the number of methods per class varies greatly.

9.3 Tools
In this chapter, I consider two tools: virtual method call resolution and live code identifi-
cation. Other tools and their performance are discussed in later chapters. Here I focus on
comparing the performance of different algorithms and configurations.

9.3.1 Virtual Call Resolution
Virtual call resolution is the problem of determining, for each virtual method invocation
site, a superset of the actual method bodies that may be invoked by the call. This chapter
examines the performance of the virtual call resolution technique described in
Section 4.3.4.

Figure 9-1. Example program sizes

�

����

����

����

����

����

����

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

1
XP
EH
U�
RI
�0
HW
KR
GV

207

The virtual call resolution tool scans each live method found by the analysis and identifies
the occurrences of LQYRNHYLUWXDO and LQYRNHLQWHUIDFH instructions. Each such

Figure 9-2. Correlation between number of methods and number of classes

Figure 9-3. Correlation between bytecode bytes and number of methods

\� �������[

�

����

����

����

����

����

����

� ��� ��� ��� ���

&ODVV�&RXQW

0
HW
KR
G�
&
RX
QW

\� �������[

�

�����

������

������

������

������

������

������

������

� ���� ���� ���� ���� ���� ����

0HWKRG�&RXQW

%
\W
HF
RG
H�
&
RX
QW

208

Figure 9-4. Correlation between bytecode bytes and number of methods, for application code

Figure 9-5. Correlation between number of methods and number of classes, for application code

\� �������[

�

������

�������

�������

�������

�������

�������

�������

�������

� ��� ���� ���� ���� ���� ���� ����

0HWKRG�&RXQW

%
\W
H
FR
G
H
�&
R
X
Q
W

Ajax

\� �������[

�

������

�������

�������

�������

�������

�������

�������

�������

� ��� ���� ���� ���� ���� ���� ����

0HWKRG�&RXQW

%
\W
H
FR
G
H
�&
R
X
Q
W

Ajax

JavaCC

\� �������[

�

����

����

����

����

����

����

� ��� ��� ��� ��� ��� ���

&ODVV�&RXQW

0
HW
KR
G�
&
RX
QW

209

instruction is considered a “virtual method invocation site”, unless the callee method is
declared ILQDO or its declaring class is ILQDO, in which case it is ignored (being trivial
to resolve statically). For each site, the tool collects and outputs the set of possible callee
method implementations. Section 4.3.4 describes how sets with more than one element are
abstracted to a single “many” value. In the implementation, the threshold is configurable;
the entire set of possible callees can be retrieved by setting it to a large integer.

Note that calls to SULYDWH methods, constructors, VWDWLF methods, and superclass
methods (via VXSHU) all use the LQYRNHVWDWLF or LQYRNHVSHFLDO instructions and
so are ignored by the virtual call resolver.

The tool summarizes its results by reporting three numbers:

• The number of virtual method invocation sites found.

• The number of sites resolved, i.e., the number of sites with zero or one possible callees.

• The number of sites dead, i.e., the number of sites with zero callees. A dead site is
either never executed or else, whenever it is executed, the object reference used for dis-
patch is always null (and therefore an exception is thrown).

The key accuracy metric is the ratio of the first two numbers: the percentage of sites
resolved.

As discussed above, because of the frequently anomalous nature of class initializer
methods, sites within class initializer methods are not included in the statistics.1

9.3.2 Live Code Identification
Live code identification is the task of determining a set of method bodies that is a superset
of the actual method bodies that may be executed by the program. (Alternatively, it can be
thought of as the task of determining a set of method bodies that are guaranteed never to be
executed by the program.) This chapter benchmarks the VPR-based technique described in
Section 4.3.5.

The tool summarizes its results by reporting two numbers:

• The number of dead method bodies found in the application code

• The total number of method bodies found in the application code

The ratio of these two numbers is the key accuracy metric here: the percentage of methods
in the application found to be dead.

Class initializer methods are counted in these statistics because they cannot significantly
skew the results.

The results for this task do not vary much across analyses. A simple analysis such as RTA
seems to get close to the “true” set of live methods, so there is little room for improvement.

1. One example is the class initializer for the class VXQ�LR�&KDUDFWHU(QFRGLQJ, which contains 411
virtual calls to +DVKWDEOH�SXW. This would account for more than half of the virtual call sites in some
examples.

210

9.4 Performance of RTA++
Figure 9-6 shows the memory required for Ajax to analyze the example programs with
RTA++ for the two tasks of virtual method call resolution and live code identification.
Figure 9-7 shows the time taken. RTA++ is fast in each case. The two tasks have similar
resource requirements.

The quality of the RTA++ results is presented later, in comparison with the results for
SEMI.

9.5 Performance of SEMI

9.5.1 Overview
Figure 9-8 shows the amount of memory used by SEMI in a “high accuracy” configuration,
for both the virtual call resolution and live code identification tasks. Figure 9-9 shows the
time taken. The missing bars indicate that the analysis did not terminate within three hours.

All configurations of SEMI presented in this chapter use RTA++ to resolve virtual method
invocations where possible before applying SEMI (see Section 7.8.1). In this “high
accuracy” configuration, SEMI performs precise analysis for the remaining virtual method
calls but turns off full polymorphic recursion; this decision is explained below.

These results also show that using SEMI, differences in the resource requirements of
the two tools are more pronounced. The reason is that the tool-specific data are propa-
gated over much larger graphs for SEMI than for RTA++.

Figure 9-6. Memory consumption of RTA++

�

�

��

��

��

��

��

��

��

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

0
D[
�+
HD
S�
6
L]
H�
�0
%
�

/LYH0HWKRG'HWHFWRU 9LUWXDO&DOO5HVROYHU

211

Figure 9-7. Time consumption of RTA++

Figure 9-8. Space consumption of SEMI configured for high accuracy

�

��

��

��

��

���

���

���

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

(
OD
SV
HG
�7
LP
H�
�V
�

/LYH0HWKRG'HWHFWRU 9LUWXDO&DOO5HVROYHU

�

��

��

��

��

���

���

���

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

D
�
HD
S�
L
H�
�

�

/LYH0HWKRG'HWHFWRU 9LUWXDO&DOO5HVROYHU

212

9.5.2 Performance of SEMI in Different Configurations
Now I consider configuring SEMI for reduced accuracy but greater efficiency. Figure 9-10
shows the memory consumption for live method detection using all combinations of the
PolyRec and HighOrder options. Figure 9-11 shows the time used.

• When PolyRec is enabled, full polymorphic recursion is used. Otherwise polymorphic
recursion is mostly suppressed (see Section 7.3.6).

• When HighOrder is enabled, virtual method calls are analyzed by the precise tech-
niques described in Chapter 6, otherwise the program is treated as first-order by SEMI,
using RTA++ to compute all the possible callees of each virtual call site (see
Section 7.11).

The technique described in Section 7.11 for transforming the programs to first-order
code significantly reduces the resource usage, making some large examples tractable
that were previously intractable. Abandoning full polymorphic recursion reduces
resource requirements with HighOrder enabled, but gives mixed results with
HighOrder disabled.

9.5.3 Accuracy of SEMI in Different Configurations
The settings of the PolyRec and HighOrder options affect the accuracy of the analysis.
Figure 9-12 shows results for live method detection. Figure 9-13 shows results for virtual
call resolution.

Figure 9-9. Time consumption of SEMI configured for high accuracy

�

����

����

����

����

����

����

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

(
OD
SV
HG
�7
LP
H�
�V
�

/LYH0HWKRG'HWHFWRU 9LUWXDO&DOO5HVROYHU

213

Figure 9-10. Space consumption of SEMI in four configurations, for live method detection

Figure 9-11. Time consumption of different SEMI configurations, for live method detection

�
��
��
��
��
���
���
���
���
���
���

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

0
D[
�+
HD
S�
6
L]
H�
�0
%
�

1RQH 3RO\5HF +LJK2UGHU +LJK2UGHU�3RO\5HF

�
����
����
����
����
����
����
����
����
����
�����

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

(
OD
SV
HG
�7
LP
H�
�V
�

1RQH 3RO\5HF +LJK2UGHU +LJK2UGHU�3RO\5HF

214

Figure 9-12. Accuracy of SEMI configurations for live method detection

Figure 9-13. Accuracy of SEMI configurations for virtual method call resolution

�����

������

������

������

������

������

������

������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

'
HD
G�
0
HW
KR
GV
�)
RX
QG

1RQH 3RO\5HF +LJK2UGHU +LJK2UGHU�3RO\5HF

������

������

������

������

������

������

������

������

�������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

9
LU
WX
D
O�&
D
OO�
6
LWH
V�
5
H
VR
OY
H
G

1RQH 3RO\5HF +LJK2UGHU +LJK2UGHU�3RO\5HF

Anomaly

215

A large number of dead methods are found in the application code of Ajax, CTAS, Jar,
JavaCC, JavaFIG and JavaP. In these examples, the “application code” actually comprises
several different programs, only one of which is analyzed by Ajax.

The results for virtual call resolution show a slight anomaly: turning off full polymorphic
recursion actually improves accuracy for Jess. Normally, restricting polymorphic recursion
can only decrease accuracy. In this case, slight variations in the order of constraint
processing determine whether calls to 6\VWHP�HUU�SULQWOQ are resolved or not.

Restricting polymorphic recursion does not significantly affect accuracy for either
live method detection or virtual call resolution.

Different SEMI configurations produce little variation in the results for live method
detection.

For virtual call resolution, enabling HighOrder significantly improves accuracy.
Many virtual method call sites do have more than one possible callee, so even an oracle
would resolve fewer than 100% of virtual call sites. Therefore, an improvement from (for
example) 88% to 89% of call sites resolved is significant, as it should be considered a
reduction of at least 10% in the number of resolvable but unresolved call sites.

Using HighOrder never decreases accuracy in practice. Section 7.11 explains why this
might not necessarily be so.

9.5.4 Component Partitioning in SEMI
In Section 7.9.1, I claimed that component partitioning improved the performance of
SEMI, in particular when object field components were partitioned according to the
declaring class of each field. Figure 9-14 shows the memory consumption of three different
configurations of SEMI applied to the live method detection problem. Figure 9-15 shows
the time consumption. The configurations all use PolyRec but not HighOrder, and each
configuration uses a different partitioning scheme.

Clearly, “by class” uses about the same amount of memory as having no partitioning. “By
hierarchy” (see Section 7.9) uses substantially more in most cases. Furthermore, “by
hierarchy” is often much slower and “by class” is usually fastest, sometimes significantly
faster than “none”.

These results verify the claim that partitioning object field components according to the
declaring class of each field is a good idea.

9.6 RTA++ and SEMI Intersection

9.6.1 Basic Results
Ajax can be configured to compute the intersection of the results of two analyses, and the
result is guaranteed to be at least as accurate as each analysis applied separately. Because
RTA++ is cheap, intersecting it with SEMI is not much more expensive than running SEMI
alone. The resulting analysis is denoted “SEMI & RTA++”.

Figure 9-17 compares the accuracy of SEMI & RTA++, SEMI, and RTA++, using neither
HighOrder nor PolyRec, for virtual call resolution. The results show that SEMI &

216

RTA++ is significantly more accurate than SEMI for this task, and SEMI is usually
more accurate than RTA++.

Figure 9-14. Memory consumption for different component partitioning schemes

Figure 9-15. Time consumption for different component partitioning schemes

�
��
��
��
��
���
���
���
���
���
���

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

0
D[
�+
HD
S�
6
L]
H�
�0
%
�

1RQH %\�FODVV %\�KLHUDUFK\

�
����
����
����
����
���
����
���
����
���

�����

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

(
DS
H
�7
LP
H�
�
�

1RQH %\�FODVV %\�KLHUDUFK\

217

RTA++ improves on SEMI because RTA++ can use information about downcasts that
SEMI ignores. For example, consider the code in Figure 9-16. SEMI cannot accurately
encode the downcast in the type system; downcasts are treated as identity functions.
Therefore SEMI infers the same type for V, L, the contents of Y, and V�, and SEMI
concludes that V� and L may be aliased. However, using the Java type information with
RTA++, it is clear that V� and L are not aliased.

Figure 9-18 gives the same results for live method detection. This task has the same
pattern as virtual call resolution but, as before, the differences are much smaller. v

Figure 9-19 gives the time used for virtual call resolution, for the three analysis. Figure 9-
20 gives the space consumed. SEMI & RTA++ is not much more expensive than
running SEMI alone.

YRLG�P\0HWKRG�9HFWRU�Y��6WULQJ�V��,QWHJHU�L��^
����Y�DGG(OHPHQW�«�"�V���L��
����«
����LI��«��^
��������6WULQJ�V�� ��6WULQJ�Y�HOHPHQW$W����
��������«
����`
`

Figure 9-16. Example Of RTA++ Improving SEMI

Figure 9-17. Accuracy of three different analyses for virtual call resolution

�� ��

� ��

� ��

��

�� ��

� ��

� ��

��

��� ��

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

L
D
�
D
�6
LH
�
H

H

7$ 6(0, 6(0,�	� 7$

218

Figure 9-18. Accuracy of three different analyses for live method detection

Figure 9-19. Time required by three different analyses for virtual call resolution

� ��

�� ��

�� ��

�� ��

�� ��

� ��

�� ��

� ��

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

HD
�0
H

�

7$ 6(0, 6(0,�	� 7$

�

����

����

����

����

�����

�����

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

$
QD
\
L
�7
LP
H�
�
�

7$ 6(0, 6(0,�	� 7$

219

9.6.2 Set Sizes
As discussed in Section 4.3.4 and Section 4.4.5, the accuracy of an intersection-based
analysis can depend on the maximum size of the data sets allowed by the set abstraction
function. Figure 9-21 shows the results of SEMI & RTA++ using different set sizes.
Changing the set size has no practical effect on the accuracy of SEMI & RTA++.

9.7 Summary of Ajax Performance

9.7.1 Algorithm Selection
Based on the results above, it is clear that the intersection analysis SEMI & RTA++ is
preferred over SEMI. It is also clear that, for these tools, polymorphic recursion can be
turned off (Section 7.3.6) with little accuracy penalty. SEMI’s handling of higher-order
code should be enabled if the program being analyzed is not too large.

9.7.2 Summary Results
Now I compare the three algorithms RTA++, SEMI & RTA++ with HighOrder, and SEMI
& RTA++ without HighOrder. Figure 9-22 shows the accuracy results for virtual call
resolution. Figure 9-23 shows the space requirements and Figure 9-24 shows the time used.
SEMI is far more expensive than RTA++ for large programs, but produces much
better results.

Figure 9-20. Space required by three different analyses for virtual call resolution

�

��

��

��

��

���

���

���

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

0
HP
RU
\�
�0
%
�

57$�� 6(0, 6(0,�	�57$��

220

9.7.3 Conclusions
Clearly, SEMI is not scalable enough to handle very large programs. The limiting factor is
time. However, it does handle realistically-sized programs, and it provides a major

Figure 9-21. Effect of different set sizes on virtual call resolution accuracy

Figure 9-22. Accuracy of the three contending algorithms

������

������

������

������

������

������

������

������

�������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&&

-D
YD
3

-H
VV

([DPSOH�3URJUDP

9
LU
WX
D
O�&
D
OO�
6
LWH
V�
5
H
VR
OY
H
G

6HW�6L]H�� 6HW�6L]H�� 6HW�6L]H�� 6HW�6L]H��

������

������

������

������

������

������

������

������

�������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

9
LU
WX
D
O�&
D
OO�
6
LWH
V�
5
H
VR
OY
H
G

57$�� 6(0,�	�57$�� 6(0,�+LJK2UGHU��	�57$��

221

Figure 9-23. Time consumption of the three contending algorithms

Figure 9-24. Space consumption of the three contending algorithms

�

����

����

����

����

�����

�����

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

$
QD
O\
VL
V�
7
LP
H�
�V
�

57$�� 6(0,�	�57$�� 6(0,�+LJK2UGHU��	�57$��

�

��

��

��

��

���

���

���

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

0
HP
RU
\�
8
VH
G�
�0
%
�

57$�� 6(0,�	�57$�� 6(0,�+LJK2UGHU��	�57$��

222

improvement over RTA for resolving virtual method calls. The task of identifying dead
application code is well solved by RTA and little improvement seems to be possible there.

223

10 Proving Downcast Safety

10.1 Introduction

10.1.1 Parametric Polymorphism and Downcasts
Java lacks parametric polymorphism. Data structures such as containers, which would be
parametrically polymorphic if the language permitted, are usually implemented by
replacing the parameter type with some “generic” type which is a supertype of the possible
instantiations of the parameter type. For example, a Java container class usually holds refer-
ences to objects of class 2EMHFW. Methods to insert objects into the collection take a
parameter of class 2EMHFW, and methods to extract objects return a value of class
2EMHFW.

For example, consider Figure 10-1. The class MDYD�XWLO�9HFWRU declares the
methods DGG(OHPHQW and HOHPHQW$W, among others. To store and retrieve objects of
a particular known class, such as String in this case, one must use downcasts.

Without the downcast to 6WULQJ, the code will not compile because the result of
HOHPHQW$W is not known to be assignable to a 6WULQJ object reference. The information
needed to prove the assignment safe without the downcast would normally be expressed
using parametric polymorphism, but cannot be expressed in Java’s type system.

10.1.2 Using SEMI To Prove Downcasts Correct
SEMI is effectively a type inference system with parametric polymorphism. SEMI can
reconstruct type parametricity information that Java’s type system cannot express. The
most straightforward application is to prove that certain downcasts will always succeed. In
the example above, Ajax will prove that the downcast to 6WULQJ always succeeds. A

FODVV�9HFWRU�^
����SXEOLF�9HFWRU���^�����`
����SXEOLF�ILQDO�V\QFKURQL]HG�YRLG�DGG(OHPHQW�2EMHFW�REM��^�����`
����SXEOLF�ILQDO�V\QFKURQL]HG�2EMHFW�HOHPHQW$W�LQW�LQGH[��^�����`
�������
`
���
VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^
����9HFWRU�Y� �QHZ�9HFWRU���
����Y�DGG(OHPHQW�DUJV>�@��
����6WULQJ�V� ��6WULQJ�Y�HOHPHQW$W����
`

Figure 10-1. Example of a Java generic container requiring downcasts

224

compiler or run-time system could use this information to eliminate run-time checks
associated with the downcast. The programmer is assured that the types of elements in the
container are consistent with expectations.

The rest of this chapter presents the design of the Ajax downcast checking tool, which is
simple given the Ajax infrastructure. I present some quantitative results on the efficacy of
the downcast checker on my example programs. These results also include some interesting
comparisons between different analysis configurations. I also discuss some of the
especially interesting or problematic pieces of code in the examples. I conclude with a
comparison of Ajax downcast checking to support for parametric polymorphism in the
language, and a discussion of some other similar ways to use Ajax.

10.2 The Downcast Checking Tool

10.2.1 Interface to the VPR
Section 4.3.3 presents the design of a VPR-based tool for proving downcasts safe. The tool
selects a set of occurrences of downcast instructions for analysis; by default, it chooses all
the downcasts in the program code found to be live. Then, using the VPR, for each
downcast instruction it computes an upper bound in the Java class hierarchy for the classes
of all objects that occur as operands to the downcast instruction. This bound is compared
to the class specified by the downcast; if the bound is equal to or is a subclass of the
specified class, the downcast is reported to be safe.

10.2.2 User Interface
The downcast checking tool is exceptionally simple to use. The user specifies the program
to be analyzed by giving a “class path” and the name of the “main” class. The tool then
prints out a list of all the downcasts that were found in live code. For each downcast, the
tool prints out the location (method name and instruction offset), the class specified by the
instruction, the bound actually detected by the analysis, and whether or not the downcast is
proven safe.

10.3 Quantitative Results

10.3.1 Proving Downcasts Safe Using RTA++
Section 5.4 describes how RTA is extended with intraprocedural flow analysis to track the
use of LQVWDQFHRI in conditional expressions, in order to refine the type information
known about variables at certain program points. This information can be used to prove the
downcast safe in the common “typecase” idiom in Java. For example, given the code

����LI��[�LQVWDQFHRI�&��^
��������&�F� ��&�[�
�����������
����`

225

it is easy for the Ajax downcast checking tool, using RTA++, to prove that the downcast is
safe. While this technique has been used by others [18], its effectiveness has not previously
been published.

Figure 10-2 shows the percentage of live downcasts proven safe using basic RTA and the
RTA++ extension. The results indicate that RTA++ is effective for many programs. Note
that even basic RTA can sometimes prove a downcast safe, for example when an abstract
class has only one concrete subclass and we downcast from the abstract class to the
subclass.

10.3.2 Proving Downcasts Safe Using SEMI
Figure 10-3 shows the results of using SEMI in its four configurations (with or without
HighOrder and PolyRec).

In most cases, SEMI alone is able to prove more downcasts safe than RTA++, although
we will see below that the downcasts it proves safe are different from the ones RTA++ can
prove safe. As shown for the tools in the previous chapter, unrestricted polymorphic
recursion is not helpful if HighOrder is enabled. However, when HighOrder is disabled,
the situation is different: unrestricted polymorphic recursion significantly improves
downcast checking.

10.3.3 Proving Downcasts Safe Using SEMI with RTA++
Taking the intersection of the information obtained by SEMI with that obtained by RTA++,
as described in Section 4.4.5, gives the best of both worlds. Figure 10-4 shows the results
of using SEMI & RTA++ (with full polymorphic recursion) compared to SEMI or RTA++
alone.

Figure 10-2. Downcasts proven safe using RTA and RTA++

�����

�����

������

������

������

������

������

������

$M
D[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

'
RZ
QF
DV
WV
�3
UR
YH
Q�
6
DI
H

57$ 57$��

226

Figure 10-3. Downcasts proven safe using SEMI

Figure 10-4. Downcasts proven safe using SEMI & RTA++

�����

������

������

������

������

������

������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

'
RZ
QF
DV
WV
�3
UR
YH
Q�
6
DI
H

57$�� 6(0,�1RQH�

6(0,�3RO\5HF� 6(0,�+LJK2UGHU�

6(0,�3RO\5HF�+LJK2UGHU�

�����

������

������

������

������

������

������

������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

'
RZ
QF
DV
WV
�3
UR
YH
Q�
6
DI
H

57$�� 6(0,�3RO\5HF� 6(0,�3RO\5HF��	�57$��

Anomaly

227

One can see that the number of downcasts proven safe by SEMI & RTA++ is close to
the sum of the downcasts proven safe by SEMI and RTA++. This is unsurprising. To a
rough approximation, RTA++ resolves downcasts introduced because Java lacks sum types
(see Section 5.4.1), and SEMI resolves downcasts introduced because Java lacks type
parametricity.

There is an oddity in the results for the Java2HTML example: SEMI & RTA++ obtains a
worse percentage of downcasts proven safe than RTA++ alone. This is because
Java2HTML is a very small program; RTA++ finds only fifteen live downcasts and proves
four of them safe, but SEMI & RTA++ finds only thirteen live downcasts, proving two of
them safe. That is, SEMI & RTA++ proved that two of RTA++’s safe downcasts are
actually dead code, and excluded them from its results.

10.3.4 Summary
Figure 10-5 shows the overall results using the best analyses available. The results for
SEMI(HighOrder+PolyRec) & RTA++ are almost identical to those for SEMI(HighOrder)
& RTA++.

For some large, realistic programs — Jar, JavaCC, and JavaP — Ajax is able to prove
the safety of more than 50% of the downcasts.

Unfortunately, the accuracy seems to deteriorate as programs get larger. Many fewer
downcasts are resolved in JavaC, JavaFIG and Ladybug than in the other programs. From
these results, it is hard to tell whether this is because of the kind of code people write in
larger programs, or whether there is some more subtle reason. Anecdotal evidence suggests

Figure 10-5. Overall results

�����

������

������

������

������

������

������

������

$MD
[

&7
$6 -D

U

-D
YD
�+
70
/

-D
YD
&

-D
YD
&&

-D
YD
),
*

-D
YD
3

-H
VV

/D
G\
EX
J

([DPSOH�3URJUDP

'
RZ
QF
DV
WV
�3
UR
YH
Q�
6
DI
H

57$�� 6(0,�3RO\5HF��	�57$�� 6(0,�+LJK2UGHU��	�57$��

228

that larger programs are more likely to contain sections of “difficult” code that destroy the
quality of the analysis results in a non-local way. This is discussed further below.

10.4 Unresolvable Downcasts
I have already mentioned the kind of code for which SEMI & RTA++ can prove downcast
safety. In this section I focus on some negative examples — usage patterns for downcasts
that SEMI & RTA++ is unable to handle.

10.4.1 Confusion Involving Sum Types
A useful example is Sun’s Java disassembler JavaP. Analyzed by SEMI & RTA++ with
polymorphic recursion and higher-order treatment, it is found to have 38 live downcasts of
which 21 are proven safe.

One of the downcasts not proven safe is at offset 8 in
VXQ�WRROV�XWLO�/RDG(QYLURQPHQW�JHW&ODVV'HFODUDWLRQ. This
downcast is applied after extracting an object from a +DVKWDEOH containing
&ODVV'HFODUDWLRQs. The problem is that the same &ODVV'HFODUDWLRQ objects are
also placed into a container of general “constant pool items”, which include 6WULQJV,
,QWHJHUV and other constants. The unification behavior of SEMI leads it to conclude that
those other constants may also be present in the +DVKWDEOH. This is one example of a
common class of problems: the use of sum types in one context causes inaccuracy in
another context. Most of the failures to resolve downcasts in JavaP can be traced back to
this problem with the “constant pool”.

Flow sensitive analysis techniques could help to reduce the damage caused by the use of
such sums.

10.4.2 “Out Of Band” Dynamic Type Knowledge
Another generally common problem that occurs in JavaP is the use of special knowledge
to discriminate sum types. For example, JavaP code often assumes that certain constant
pool items have certain types, based on arithmetic invariants governing indices into the
constant pool array (e.g., two halves of a 64-bit value are always stored at consecutive
locations in the array). It then downcasts to the known type without any guarding
LQVWDQFHRI check.

Another example is the method

VXQ�WRROV�MDYD�0HWKRG7\SH�HTXDO$UJXPHQWV�VXQ�WRROV�MDYD�7\SH�

The parameter is downcast to a 0HWKRG7\SH without checking, because other code estab-
lishes a precondition that the parameter is indeed a 0HWKRG7\SH. Propagating such
invariants interprocedurally would require more sophisticated analysis than that provided
by Ajax.

229

10.5 Conclusions

10.5.1 Summary
The Ajax downcast checking tool is able to prove more than half of the downcasts correct
for some real programs. However, as programs get larger the accuracy decreases. This
appears to be because as the program gets larger, there is an increasing chance of encoun-
tering some code idiom that pollutes the results for a large fraction of the program. The use
of sums is often the culprit.

10.5.2 Other Applications
Proving the safety of downcasts could be useful for Java run-time systems as well as
programmers. Many Java programs could be sped up by eliminating the run-time checks.

Another use of this technology would be to reverse engineer type parametricity in existing
Java programs, in order to translate them into a language that supports parametericity such
as Generic Java [13]. It would not be difficult to implement such a tool based on the tools
I have already built.

10.5.3 Limitations of Downcast Checking
Checking downcasts is not the only use of type parametricity information, and checking
downcasts does not produce all the benefits that a language with parametric polymorphism
provides. For example, in Java it is common to implement a set using a +DVKWDEOH where
objects are put into the +DVKWDEOH, and the presence of keys is tested using a method
returning a boolean value, but no object extraction (and downcasting) ever occurs.
Downcast checking will say that everything is safe even if all sorts of different objects are
added to the set. In a language with parametric polymorphism, the user could declare the
desired element type and the language would detect any usage inconsistent with the decla-
ration.

A completely automatic tool cannot detect such errors. Without user annotations, or at least
some heuristics, it is impossible to determine the intended type parametricity of a data
structure. If such annotations were available, then it would be easy to design an Ajax tool
to check them.

230

231

11 Ajax Object Models

11.1 Introduction
In this chapter, I describe what object models mean in Ajax, and how Ajax can construct
them. Then I present examples taken from real programs, and discuss the advantages and
disadvantages of using Ajax to construct these object models.

11.1.1 Overview of Object Models
An object model is a graph-based abstraction of a set of program states. In this thesis, each
node represents a collection of runtime objects that occur in the states. Edges represent
relationships between the collections, such as class inheritance and field reference.

For example, Figure 11-1 shows an object model for the program in Figure 11-2. A dotted
edge indicates an inheritance relationship. A solid line represents a field edge, labelled with
the name of the referring field. Each node is labelled with the class name of the objects it
represents. For example, from this diagram we can see at a glance that ; has two fields
referring to < objects, some of which may actually be of class =.

This object model was obtained directly from the program’s class declarations. However,
more elaborate object models are possible and useful. For example, Figure 11-3 shows
another object model for the same program. This object model reveals more information,
such as the fact that ;’s \� and \� fields both refer specifically to objects of class < and
not =. This information cannot be obtained from the class declarations alone; different
objects of class < must be represented by different nodes.

Figure 11-1. A class hierarchy object model

2EMHFW

; <

\�

\�

FRQWHQWV

=

6WULQJ

V

232

An object model is a directed graph. Each node in the graph is associated with a set of
runtime objects. There are two kinds of edges: field edges, labelled with field names, and
inheritance edges, which are unlabelled. A field edge from A to B labelled F indicates that
at least one of A’s objects has a field F containing a reference to an object in B. An inher-
itance edge from A to B indicates that B’s objects are a subset of A’s objects.

FODVV�;�^
����<�\��
����<�\��
����;���^
��������\�� �QHZ�<�WKLV��
��������\�� �QHZ�<�����"�QHZ�=�����WKLV��
����`
����VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^
��������;�[� �QHZ�;���
����`
`

FODVV�<�^
����2EMHFW�FRQWHQWV�
����<�2EMHFW�S��^
��������FRQWHQWV� �S�
����`
`

FODVV�=�H[WHQGV�<�^
����6WULQJ�V� �³)RRWEDOO´�
����=���^
��������VXSHU�V��
����`
`

Figure 11-2. An example Java program

Figure 11-3. A richer object model

\�
\�

FRQWHQWV

s

6WULQJ

<¶

<¶¶

FRQWHQWV

FRQWHQWV

2EMHFW

<

= ;

233

The class hierarchy of a Java program can be interpreted as an object model. Each node
corresponds to a class C, and is associated with the set of objects of class C or some subclass
of C. Field edges are drawn from C’s node to the nodes corresponding to the declared class
types of the object reference fields declared in C. Inheritance edges are drawn from each
class to its subclasses.

Object models visualize the structure of a program’s data. In object-oriented programs, the
structure of the data reflects the overall organization of the program. Programmers can use
object models to capture this organization graphically.

An object model can be thought of as a static projection of all possible runtime heap states
of a program.

11.1.2 A Definition of Object Models
The following definition is as flexible as possible to accommodate various ideas about what
an object model is, how it can be constructed, and how it can be used.

The class hierarchy object model has the following properties:

1. The field edges are sound; field relationships in all program states are reflected in the
model. Formally, if in some program state an object O1 has a field F containing a refer-
ence to object O2, and O1 and O2 are represented in the model (i.e., they are associated
with at least one node), then there are nodes A and B and a field edge from A to B
labelled F such that O1 is associated with A and O2 is associated with B.

For example, in Figure 11-3, in the final program state, [�\� refers to an object associ-
ated with the <¶¶ node. Since the object [is associated with node X, an edge labelled
\� must be drawn from node ; (or node 2EMHFW) to node <¶¶.

2. Inheritance edges obey the subset relationship: if O1 is associated with node A, and
there is an inheritance edge from A to B, then O1 is associated with node B.

In Figure 11-3, all objects associated with node = must also be associated with the <
node and the 2EMHFW node.

3. Every object has a “most specific” node: if O is associated with nodes A and B, then
there is a node C such that O is associated with C and there is a path in the inheritance
edges from A to C and from B to C

The most specific node for [in the example is the node labelled ;. There is a path from
the other node associated with [(2EMHFW) to the most specific node.

4. If there is a field edge E from A to B labelled F, and a node C such that there is a path in
the inheritance edges from C to A, and C has an outgoing field edge labelled F, then A
equals C and that edge is E itself.

For example, it would not be permissible to have an edge emanating from node <
labelled V, unless the V-edge emanating from node = was deleted.

234

We take these properties as definitional, and call any graph satisfying them an object
model. Property 1 is useful because it assigns meaning to the field edges of the graph —
more precisely, it assigns meaning to the absence of field edges in the graph. Properties 2
and 3 impose structure on the associations between nodes and objects; in particular
property 3 means that given a map from each object to its “most specific” node (e.g., its
class), we can find all the nodes associated with any given object. Property 4 guarantees
that each field of an object maps to at most one edge in the model.

The class hierarchy model has the following additional “completeness” properties:

5. Objects are complete: given an object O1 containing a field F, a node A such that O1 is
associated with node A, and an object O2 such that O1.F = O2, then for some node B
there is an edge in the model from A to B labelled F.

6. All objects are included: given an object O1, there is a node A such that O1 is associated
with node A.

A useful object model need not satisfy these properties. The object models created by Ajax
satisfy property 5 but not property 6.

11.2 Computing Object Models with Ajax
Ajax includes an object modelling tool based on the VPR. Building object models requires
extensive post-processing of the raw value-point relation. This section describes this
processing, first giving the series of steps required, and then elaborating on the difficult
steps.

11.2.1 Overview
Previous work on object model construction [46] starts with a class hierarchy and applies
transformations to obtain more refined models. In contrast, Ajax builds a refined object
model and then applies transformations to simplify the model.

• Ajax first constructs a simple model that uses no inheritance edges and does not obey
property 4 (unique field edges). The model associates each object with at most one
node. This model is simply a conservative static approximation to the heap graph
reachable from a given set of “root objects”, specified by bytecode expressions pro-
vided by the user. Property 5 (“object completeness”) is obeyed, but not property 6
(because not all objects are included). The construction of this heap graph is described
in more detail in Section 11.2.2.

Figure 11-4 gives this basic model for the program in Figure 11-2. The root objects are
the objects evaluated to by the expression [in the PDLQ method. Note that the node
“some other <” has two outgoing edges labelled FRQWHQWV, violating property 4.

• Next, a simple object model is obtained from the heap graph by merging nodes in order
to satisfy property 4. That is, whenever we have a node A with two outgoing field edges
labelled F to nodes B and C, we merge nodes B and C and delete one of the field edges.

In the example, Ajax merges the ; and = nodes; see Figure 11-5.

235

• In the next pass, each node explodes into a set of subnodes, one for each class of objects
associated with the node and one for each of their superclasses. An inheritance edge is
introduced between each class and its superclass. The origin of each field edge is set to
the subnode for the class in which the field is declared. The target is the subnode of the
original target node for the class the field is declared as.

See Figure 11-6. The rounded boxes group the subnodes extracted from each original
node. For example, the node “some =, some ;” is exploded into four nodes: one for
class =, one for class ;, and one each for their superclasses < and 2EMHFW. The edge
for field \� has its origin at the subnode for ;, because field \� is declared in class ;.
The edge points to the subnode for class < because \� is declared as class <.

• Sometimes the target of a field edge is known to be of a more specific class than the
declared class. (This information is obtained by a separate Ajax query to compute the
most specific common superclass of the target objects.) The field edge is retargeted to
the more specific class.

For example, in Figure 11-6, =’s field FRQWHQWV is known to contain only 6WULQJV.
The edge is updated to point to the 6WULQJ node.

Figure 11-4. Ajax heap graph

Figure 11-5. Ajax heap graph with unique field edges (simple object model)

\�

\�

FRQWHQWV

V FRQWHQWV

some 6WULQJ some <some ;

some other <

some =

FRQWHQWV FRQWHQWV

Root

\�

\�

FRQWHQWV

s

some 6WULQJ some <

some ;

some other <

some =

FRQWHQWV
FRQWHQWV

236

• In Figure 11-6, three of the 2EMHFW nodes are not useful because the only edges inci-
dent to them are outgoing inheritance edges. All such nodes are deleted, giving
Figure 11-7. Since this can create more nodes incident only to outgoing inheritance
edges, the operation is repeated until no applicable nodes remain. Other pruning can
also be performed at this stage; this is discussed in more detail in Section 11.2.3.

Figure 11-6. Ajax object model with classes and inheritance

Figure 11-7. Ajax object model with superclass suppression

\�
\�

FRQWHQWV

V

6WULQJ

<

<

FRQWHQWV

contents

2EMHFW

2EMHFW

2EMHFW

2EMHFW
<

= ;

\�
\�

FRQWHQWV

V

6WULQJ

<

<

FRQWHQWV

FRQWHQWV

2EMHFW

<

= ;

237

In a final (optional) pass, Ajax identifies isomorphic subgraphs within the model and
merges them to save space. Figure 11-7 does not contain any isomorphic subgraphs;
therefore it is the graph produced by Ajax for the example program. This is the same model
shown in Figure 11-3.

11.2.2 Computing Heap Graphs With The VPR
The first step is to construct a heap graph. Clearly the VPR is not a natural encoding of a
heap graph; we must extract a heap graph using Ajax queries.

11.2.2.1 Approach
Suppose a “root expression” H[S is given. This expression can be chosen by the user as
described in Section 11.2.4.

Ajax constructs a heap graph with a root node representing the objects to which H[S
evaluates. Then, for each field name F in the program, it checks whether H[S�F � H[S�F.
If not, then the objects for the root node never have a field F, or their F fields always contain
null. Otherwise Ajax adds a field edge labelled F, emanating from the root node and
pointing to a new node — the node representing objects evaluated to by “H[S.F”. We repeat
this procedure, taking each new node and adding outgoing edges for its fields, building a
tree representing the objects reachable from the root objects.

Many nodes in the tree may correspond to overlapping (or identical) sets of objects.
Therefore we test, for each pair of nodes, whether the expressions associated with the nodes
are related by the value-point relation. If the expressions are related then we merge the
nodes. This means that the tree may become a general graph.

11.2.2.2 Method
The procedure is shown in Figure 11-8.

It is impractical to build such a tree and then subsequently merge the nodes. The initial tree
is simply too large, and in the case of cyclic data structures, it may even be infinite. Instead,
before creating a new node (label �), Ajax checks to see whether the node’s expression is
related to any of the expressions associated with already existing nodes (label �). If so then
the new node need not be created; the matching existing node is used instead (label �).

11.2.2.3 Correctness
Using the standard value-point relation, the above procedure is not sound. It assumes that
when two nodes are related in the VPR, they have exactly the same behavior. More
precisely, the algorithm above is only correct if the VPR has the VXEVWLWXWDELOLW\�SURSHUW\:

This means that if H1 and H2 are related, substitution of one for the other does not change
whether an expression pair is in the VPR.

This property is not implied by the definition of the VPR. Consider the example in
Figure 11-9. According to the VPR, and . However,
substituting [for \, does not hold. Informally, the reason is that

H1 H2, . H1 H2� H . H" 1 H� H2 H�À() H), . H" 1.) H� H2.) H�À()¾Ã"

I�[I�\� I�\�OHQJWK I�OHQ�

I�[�OHQJWK I�OHQ�

238

the two antecedent relation pairs hold in different contexts, so no conclusion can be drawn
from their conjunction.

11.2.2.4 Solution
Therefore, the object modelling tool notifies the analysis that it must produce a VPR
approximation satisfying the substitutability property. For increased flexibility, the tool
specifies a program point O at which expressions must be substitutable; all other expressions
need not be substitutable. The exact property demanded is:

This suffices because all queries required to build the heap graph are based on one or more
root expressions, which are all at the same program point. Limiting the property to one
program point means that other queries using the same VPR approximation (e.g., the
liveness query used to limit the scope of the analysis) are not seriously impacted.

,QLWLDOL]H�WKH�JUDSK�*�WR�FRQWDLQ�D�VLQJOH�QRGH��WKH�URRW
/HW�0�EH�D�PDS�IURP�*¶V�QRGHV�WR�H[SUHVVLRQV
,QLWLDOL]H�WKH�PDS�0�WR�PDS�WKH�URRW�QRGH�WR�H[S
5HSHDW�^
��)RU�HDFK�ILHOG�)�LQ�WKH�SURJUDP�^
����)RU�HDFK�QRGH�1��LQ�*�^
������,I�0�1���)���!�0�1���)�LV�LQ�WKH�935�^
��������)RU�HDFK�QRGH�1��LQ�*�^
����������,I�0�1���)���!�0�1���LV�LQ�WKH�935�^
������������,I�WKHUH�LV�QR�HGJH�IURP�1��WR�1��ODEHOOHG�)�^
��������������$GG�WR�*�DQ�HGJH�IURP�1��WR�1��ODEHOOHG�)
������������`
����������`
��������`
��������,I�1��KDV�QR�RXWJRLQJ�HGJH�ODEHOOHG�)�^
����������&UHDWH�D�QHZ�QRGH�1
����������([WHQG�0�ZLWK�D�PDSSLQJ�IURP�1�WR�0�1���)
����������$GG�WR�*�DQ�HGJH�IURP�1��WR�1�ODEHOOHG�)
��������`
������`
����`
��`
`�8QWLO�*�GRHV�QRW�FKDQJH

Figure 11-8. Basic heap graph construction algorithm

VWDWLF�YRLG�I�2EMHFW�[��2EMHFW�\��LQW�OHQ��^
`
VWDWLF�YRLG�PDLQ�6WULQJ>@�DUJV��^
��6WULQJ>@�]RR� �^�³OLRQ´��³WLJHU´�`�
��I�]RR��]RR��DUJV�OHQJWK��
��I�]RR��DUJV��DUJV�OHQJWK��

`

Figure 11-9. Example of substitutability violation

H1 H2, . O:H1 O:H2�

H), . O:H1" .) H� O:H2.) H�À() H . O:H1" H� O:H2 H�À()¾

Ã"

239

11.2.2.5 Implementing Substitutability In RTA++
It is easy to enforce substitutability in RTA++. We simply assign the static bytecode type
TOP to any expression of the form , where O is the program point where substitutability
is required. This ensures that every such expression is related to all other expressions in the
computed VPR.

This approximation is not particularly useful, because it implies regardless of
the values of and , so using RTA++ alone, the heap graph will collapse to a point.
Unfortunately it is necessary. For suppose that for some , has Java type 2EMHFW.
(The existence of such an is almost certain in practice.) Then for any and such that

 and have Java class types, RTA++ will give and . The
substitutability property then requires that .

Therefore RTA++ alone is not suitable as the analysis engine for the Ajax object modeling
tool.

11.2.2.6 Implementing Substitutability In SEMI
Suppose that and both map to SEMI constraint variables that have no instance
constraints emanating from them. Then in SEMI, if and only if and
map to the same constraint variable. If indeed they map to the same constraint variable, the
substitutability property is satisfied for and , because SEMI’s VPR is a function
of the constraint variables mapped to by the expressions.

Therefore, to enforce the substitutability property in SEMI, I force all expressions of the
form to have no instance constraints emanating from them, by forcing their constraint
variables to be global (see Section 7.6.3).

11.2.2.7 Improving The Heap Graph Algorithm
The algorithm described above is rather inefficient. The implementation of the object
modelling tool speeds it up by exploiting the power of the Ajax interface. The algorithm is
presented in Figure 11-10.

The improved algorithm uses a series of iterations. It maintains a set of “fringe” nodes, the
nodes added in the last iteration (set 7). At each step, the fields of the fringe nodes are
examined and potential new target nodes for those fields are created (label �). A new node
that is related to an existing node is merged into the existing node (label �). New nodes that
are related to each other are merged (label �). New nodes that are not even related to
themselves are deleted (label �). (The field never refers to any objects.) Surviving new
nodes are added to the graph (label �) and become the new fringe set.

11.2.2.8 Reducing Space Consumption
The above algorithm exploits the Ajax interface, but peak memory usage can still be very
large: accumulating the complete set of source nodes matching each target node can require
space quadratic in the number of candidate new nodes.

Another improvement to the algorithm reduces peak space consumption. The basic idea is
to compute just one or two elements of the set of source nodes reaching each target node.
This is enough information to merge nodes. The query repeats several times, merging nodes

O:H

O:H1 O:H2�

H1 H2
H O:H

H H1 H2
O:H1 O:H2 O:H O:H1� O:H O:H2�

O:H1 O:H2�

O:H1 O:H2
O:H1 O:H2� O:H1 O:H2

O:H1 O:H2

O:H

240

,QLWLDOL]H�WKH�JUDSK�*�WR�FRQWDLQ�D�VLQJOH�QRGH��WKH�URRW
/HW�6��WKH�IULQJH�VHW��FRQWDLQ�WKH�URRW�QRGH
/HW�0�EH�D�PDS�IURP�*¶V�QRGHV�WR�H[SUHVVLRQV
,QLWLDOL]H�WKH�PDS�0�WR�PDS�WKH�URRW�QRGH�WR�H[S
:KLOH�6�LV�QRQHPSW\�^
��/HW�7�EH�WKH�QHZ�IULQJH�VHW��LQLWLDOO\�HPSW\
��/HW�7B0�EH�DQ�HPSW\�PDS�IURP�7¶V�QRGHV�WR�H[SUHVVLRQV
��/HW�3�EH�DQ�HPSW\�PDS�IURP�QRGHV�WR�VHWV�RI��QRGH��ILHOG��SDLUV
�����3�Q��UHFRUGV�HGJHV�WR�EH�FUHDWHG�SRLQWLQJ�LQWR�QRGH�Q

��)RU�HDFK�QRQVWDWLF�ILHOG�)�LQ�WKH�SURJUDP�^
����)RU�HDFK�HOHPHQW�6BH�RI�6�^
������&UHDWH�D�QHZ�QRGH�1
������$GG�1�WR�7
������([WHQG�7B0�ZLWK�D�PDSSLQJ�IURP�1�WR�0�6BH��)
������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�1�WR�^�6BH��)�`
����`
��`

�����%HJLQ�TXHU\�SURFHVVLQJ
��5XQ�D�TXHU\�ZLWK�WKH�IROORZLQJ�SDUDPHWHUV�
����VRXUFHV� �7B0
����WDUJHWV� �0�8�7B0
����5� �UHVXOWV� �IRU�HDFK�WDUJHW�QRGH��WKH�VHW�RI�VRXUFH�QRGHV
ZKRVH�H[SUHVVLRQV�DUH�UHODWHG�WR�WKH�WDUJHW�QRGH¶V�H[SUHVVLRQ
��
�����$Q\�QHZ�QRGHV�WKDW�DUH�UHODWHG�WR�H[LVWLQJ�QRGHV�DUH
�����UHSODFHG�E\�WKH�H[LVWLQJ�QRGHV
��)RU�HDFK�QRGH�*BH�LQ�*�^
����([WHQG�3�ZLWK�D�PDSSLQJ�IURP�*BH�WR�^`
����)RU�HDFK�HOHPHQW�7BH�RI�5�*BH��^
������,I�7BH�LV�VWLOO�LQ�7�WKHQ�^
��������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�*BH�WR�3�7BH��8�3�*BH�
��������'HOHWH�WKH�PDSSLQJ�IRU�7BH�IURP�3
��������'HOHWH�7BH�IURP�7�DQG�7B0
������`
����`
��`

Figure 11-10. More efficient heap graph construction algorithm

241

after each iteration, until the algorithm converges to the same state it would have reached
in one step of the previous algorithm.

There are two kinds of queries. Each query is parameterized by a set of source expressions
and a set of target expressions. For each target expression , the first kind of query
computes and returns a source expression such that , or returns “unknown” if
no such exists. The second kind of query computes and returns two distinct source
expressions and such that and (it may also return just one
expression or “unknown” if two such expressions do not exist). These queries are imple-
mented in the Ajax framework similarly to the abstract set query in Section 4.3.4, except
that when a set overflows its bound, its current contents are remembered and propagated.
For example, for the second kind of query, the result of { } merged with { , } could
be abstracted to “at least { , }”.

Note that if intersection operations are applied to this “bounded set” query data, we may
have a result consisting of an “overflowing” set but with no elements known to be in the
set. (For example, consider the intersection of the abstract set “at least { }” with the
abstract set “at least { }”; the result can only be “at least {}”.) This information is not
useful to the heap graph algorithm. Therefore this implementation of the object modeling
tool does not work with multiple intersecting analyses.

The query processing of the above algorithm is modified as shown in Figure 11-11. In
practice few iterations of the inner loop are required.

��)RU�HDFK�QRGH�7BH�LQ�7�^
�������1HZ�QRGHV�WKDW�DUHQ¶W�HYHQ�UHODWHG�WR�WKHPVHOYHV�DUH�GHDG
����,I�5�7BH��LV�HPSW\�WKHQ�^
������'HOHWH�7BH�IURP�7�DQG�7B0
������'HOHWH�WKH�PDSSLQJ�IRU�7BH�IURP�3
����`�HOVH�^
������)RU�HDFK�HOHPHQW�7BU�RI�5�7BH��^
��������,I�7BU�LV�VWLOO�LQ�7�DQG�7BU�LV�QRW�HTXDO�WR�7BH�^
�������������0HUJH�7BU�LQWR�7BH�EHFDXVH�WKH\¶UH�UHODWHG
����������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�7BH�WR�3�7BH��8�3�7BU�
����������'HOHWH�WKH�PDSSLQJ�IRU�7BU�IURP�3
����������'HOHWH�7BU�IURP�7�DQG�7B0
��������`
������`
����`
��`
�����(QG�TXHU\�SURFHVVLQJ

��/HW�6� �7
��)RU�HDFK�QRGH�1�LQ�WKH�GRPDLQ�RI�3�^
����([WHQG�0�ZLWK�D�PDSSLQJ�IURP�1�WR�7B0�1�
����)RU�HDFK�HOHPHQW��6BH��)��RI�3�1��^
������$GG�DQ�HGJH�WR�*�IURP�6BH�WR�1�ODEHOOHG�)
����`
��`
`

Figure 11-10. More efficient heap graph construction algorithm

H1
H2 H1 H2�

H2
H2 H3 H1 H2� H1 H3�

H2 H3 H4
H2 H3

H1
H2

242

�����%HJLQ�TXHU\�SURFHVVLQJ
��5XQ�D�TXHU\�RI�WKH�ILUVW�NLQG�ZLWK�WKH�IROORZLQJ�SDUDPHWHUV�
����VRXUFHV� �7B0
����WDUJHWV� �0�8�7B0
����5� �UHVXOWV� �IRU�HDFK�WDUJHW�QRGH������VRXUFH�QRGHV
ZKRVH�H[SUHVVLRQV�DUH�UHODWHG�WR�WKH�WDUJHW�QRGH¶V�H[SUHVVLRQ
��
�����$Q\�QHZ�QRGHV�WKDW�DUH�UHODWHG�WR�H[LVWLQJ�QRGHV�DUH
�����UHSODFHG�E\�WKH�H[LVWLQJ�QRGHV
��)RU�HDFK�QRGH�*BH�LQ�*�^
����([WHQG�3�ZLWK�D�PDSSLQJ�IURP�*BH�WR�^`
����)RU�HDFK�HOHPHQW�7BH�RI�5�*BH��^
������,I�7BH�LV�VWLOO�LQ�7�WKHQ�^
��������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�*BH�WR�3�7BH��8�3�*BH�
��������'HOHWH�WKH�PDSSLQJ�IRU�7BH�IURP�3
��������'HOHWH�7BH�IURP�7�DQG�7B0
������`
����`
��`

��)RU�HDFK�QRGH�7BH�LQ�7�^
�������1HZ�QRGHV�WKDW�DUHQ¶W�HYHQ�UHODWHG�WR�WKHPVHOYHV�DUH�GHDG
����,I�5�7BH��LV�HPSW\�WKHQ�^
������'HOHWH�7BH�IURP�7�DQG�7B0
������'HOHWH�WKH�PDSSLQJ�IRU�7BH�IURP�3
����`�HOVH�^
������)RU�HDFK�HOHPHQW�7BU�RI�5�7BH��^
��������,I�7BU�LV�VWLOO�LQ�7�DQG�7BU�LV�QRW�HTXDO�WR�7BH�^
�������������0HUJH�7BU�LQWR�7BH�EHFDXVH�WKH\¶UH�UHODWHG
����������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�7BH�WR�3�7BH��8�3�7BU�
����������'HOHWH�WKH�PDSSLQJ�IRU�7BU�IURP�3
����������'HOHWH�7BU�IURP�7�DQG�7B0
��������`
������`
����`
��`

Figure 11-11. Heap graph construction algorithm with reduced peak space consumption

243

11.2.3 Lossless Improvement to the Model
After constructing the heap graph and elaborating it with class and field information, the
object model may contain superfluous nodes that can be eliminated.

11.2.3.1 Superflous Leaf Classes
Field edges can be retargeted from their declared classes to some actual class that is more
specific than the declared class. In the example of Figure 11-12, the analysis engine may
suggest that the QDPH field refers to an abstract object which could be an ,QWHJHU or a
6WULQJ, but since the QDPH field is declared to be a 6WULQJ and no other fields reference
the abstract object, the QDPH field is retargeted to 6WULQJ. This can leave nodes such as
,QWHJHU which are not reachable, i.e., no field edge points to the class or any of its super-
classes or subclasses.

Such nodes can never correspond to real objects in the program, so they can be deleted. In
the example, the ,QWHJHU subclass can be removed. (The 2EMHFW superclass can then
also be hidden.) These nodes can occur because of inaccuracy in the underlying analysis
engine.

11.2.3.2 Merging Identical Subgraphs
Consider the example on the left hand side of Figure 11-13. Suppose a programmer is inter-
ested in discovering the Java types of the objects that may be (indirectly) referenced by
2UE, and which field dereference paths are involved.

Clearly it is unnecessary to distinguish the two 9HFWRUV for this task — the fact that the
two 9HFWRUV are not aliased is not important. In this case, one can save space in the model
by merging identical subgraphs. The Ajax object modeling tool provides this as an option.
The above example would be reduced as shown in Figure 11-13.

��5HSHDW�^
����5XQ�D�TXHU\�RI�WKH�VHFRQG�NLQG�
������VRXUFHV� �7B0
������WDUJHWV� �7B0
������5� �UHVXOWV� �IRU�HDFK�WDUJHW�QRGH������VRXUFH�QRGHV
ZKRVH�H[SUHVVLRQV�DUH�UHODWHG�WR�WKH�WDUJHW�QRGH¶V�H[SUHVVLRQ
����
����)RU�HDFK�QRGH�7BH�LQ�7�^
������)RU�HDFK�HOHPHQW�7BU�RI�5�7BH��^
��������,I�7BU�LV�VWLOO�LQ�7�DQG�7BU�LV�QRW�HTXDO�WR�7BH�^
�������������0HUJH�7BU�LQWR�7BH�EHFDXVH�WKH\¶UH�UHODWHG
����������([WHQG�3�ZLWK�D�PDSSLQJ�IURP�7BH�WR�3�7BH��8�3�7BU�
����������'HOHWH�WKH�PDSSLQJ�IRU�7BU�IURP�3
����������'HOHWH�7BU�IURP�7�DQG�7B0
��������`
������`
����`
��`�XQWLO�5�7BH�� �^�7BH�`�IRU�HYHU\�7BH�LQ�7
�����(QG�TXHU\�SURFHVVLQJ

Figure 11-11. Heap graph construction algorithm with reduced peak space consumption

244

11.2.4 User Interface
The Ajax object modeling tool has a simple user interface. The user specifies the program
to be analyzed by giving the “class path” and the name of the “main” class. By default, the
tool uses as root expressions all the local variables at the last instruction in the main class
reachable by non-exceptional control flow. The user can specify an explicit root expression
instead, if desired. The tool computes the model and outputs the results in a format suitable
for processing by AT&T’s GRW tool for graph layout [36].

11.3 Examples

11.3.1 JavaP Example
Figure 11-14 shows the object model produced by Ajax applied to Sun’s JavaP disas-
sembler tool. Isomorphic subgraphs have not been merged. This example clearly shows the
strengths and limitations of the Ajax object modeling tool.

This model uses the default set of root expressions — all the local variables at the last
instruction in -DYD3�PDLQ reachable by non-exceptional control flow. The tool uses the
SEMI analysis.

Figure 11-12. Example of field retargeting leaving unreachable nodes

Figure 11-13. Example of merging duplicate subgraphs

,QWHJHU

2EMHFW

3DFNDJH

6WULQJ

QDPH

,QWHJHU

2EMHFW

3DFNDJH

6WULQJ

QDPH

6WULQJ

9HFWRU

2UE

6WULQJ

9HFWRU%R[

6WULQJ

%R[9HFWRU

2UE

FODVV�3DFNDJH�^
����6WULQJ�QDPH�
�������
`

245

Figure 11-14. JavaP object model

F
K
D
U>
@

&
K
D
U7
R
%
\W
H
'
H
ID
X
OW

+
D
V
K
WD
E
OH

+
D
V
K
WD
E
OH
(
Q
WU
\
>@

WD
E
OH

$
UU
D
\
7
\S
H

7
\
S
H

H
OH
P
7
\S
H

%
LQ
D
U\
&
R
Q
V
WD
Q
W3
R
R
O

2
E
MH
F
W>
@

F
S
R
R
O

E
\W
H
>@

W\
S
H
V

+
D
V
K
WD
E
OH

+
D
V
K
WD
E
OH
(
Q
WU
\>
@

WD
E
OH

E
\
WH
>@

6
WU
LQ
J

FK
D
U>
@

YD
OX
H

%
LQ
D
U\
$
WW
UL
E
X
WH

Q
H
[W

,G
H
Q
WL
ILH
U

Q
D
P
H

E
\W
H
>@

G
D
WD

2
X
WS
X
W6
WU
H
D
P
:
UL
WH
U

3
UL
Q
W6
WU
H
D
P

R
X
W

E
\W
H
>@

E
E

&
K
D
U7
R
%
\
WH
&
R
Q
YH
UW
H
U

F
WE

Q
D
P
H

Y
D
OX
H

1
X
P
E
H
U

)
OR
D
W

'
R
X
E
OH

,Q
WH
J
H
U

/
R
Q
J

2
E
MH
F
W

D
UU
D
\
H
OH
P
H
Q
W

)
LOH
'
H
VF
UL
S
WR
U

3
UL
Q
W:
UL
WH
U

OLQ
H
6
H
S
D
UD
WR
U

R
X
W

9
H
FW
R
U

2
E
MH
F
W>
@

H
OH
P
H
Q
W'
D
WD

+
D
V
K
WD
E
OH
(
Q
WU
\

Q
H
[W

N
H
\

6
WU
LQ
J
>@

Y
D
OX
H

=
LS
(
Q
WU
\

Q
D
P
H

E
\
WH
>@

H
[
WU
D

6
WU
LQ
J

FR
P
P
H
Q
W

+
D
VK
WD
E
OH
(
Q
WU
\

D
UU
D
\H
OH
P
H
Q
W

+
D
V
K
WD
E
OH
(
Q
WU
\>
@

+
D
V
K
WD
E
OH
(
Q
WU
\

D
UU
D
\
H
OH
P
H
Q
W

%
LQ
D
U\
&
OD
V
V

F
S
R
R
O

D
WW
V

9
H
FW
R
U

G
H
S
H
Q
G
H
Q
F
LH
V

7
\
S
H
>@

D
UU
D
\H
OH
P
H
Q
W

&
K
D
U7
R
%
\
WH
&
R
Q
Y
H
UW
H
U

VX
E
%
\
WH
V

&
K
D
U7
R
%
\W
H
6
LQ
J
OH
%
\
WH

6
WU
LQ
J

Y
D
OX
H

3
D
FN
D
J
H

S
N
J

&
OD
VV
3
D
WK

S
D
WK

0
R
G
LIL
H
U)
LOW
H
U

2
X
WS
X
W6
WU
H
D
P
:
UL
WH
U

F
WE

R
X
W

E
E

F
K
D
U2
X
W

%
X
II
H
UH
G
:
UL
WH
U

WH
[
W2
X
W

=
LS
)
LOH

Q
D
P
H

5
D
Q
G
R
P
$
F
FH
VV
)
LOH

UD
I

+
D
V
K
WD
E
OH

H
Q
WU
LH
V

)
LOH
'
H
VF
UL
S
WR
U

+
D
V
K
WD
E
OH

+
D
VK
WD
E
OH
(
Q
WU
\
>@

WD
E
OH

)
LH
OG
'
H
IL
Q
LWL
R
Q

Q
D
P
H

LQ
Q
H
U&
OD
VV

FO
D
]]

Q
H
[
W)
LH
OG

Q
H
[
W0
D
WF
K

W\
S
H

,G
H
Q
WL
ILH
U7
R
N
H
Q
>@

H
[S
,G
V

%
LQ
D
U\
)
LH
OG

LQ
G
H
[
�

&
K
D
U7
R
%
\
WH
&
S
�
�
�
�

VK
R
UW
>@

LQ
G
H
[�

6
WU
LQ
J
>@

OR
F
D
O�
�

D
UU
D
\
H
OH
P
H
Q
W

2
E
MH
FW
>@

D
UU
D
\
H
OH
P
H
Q
W

(
Q
Y
LU
R
Q
P
H
Q
W

-
D
Y
D
3
(
Q
Y
LU
R
Q
P
H
Q
W

H
Q
Y

/
R
D
G
(
Q
Y
LU
R
Q
P
H
Q
W

V
K
R
Z
$
FF
H
V
V

:
UL
WH
U

OR
F
N

&
OD
V
V7
\
S
H

F
OD
VV
1
D
P
H

W\
S
H
6
LJ

0
H
WK
R
G
7
\
S
H

+
D
V
K
WD
E
OH

+
D
VK
WD
E
OH
(
Q
WU
\
>@

WD
E
OH

+
D
VK
WD
E
OH
(
Q
WU
\

N
H
\

Q
H
[
W

YD
OX
H

)
LOW
H
U2
X
WS
X
W6
WU
H
D
P

%
X
II
H
UH
G
2
X
WS
X
W6
WU
H
D
P

R
X
W

&
OD
V
V
'
H
F
OD
UD
WL
R
Q
>@

&
OD
V
V
'
H
F
OD
UD
WL
R
Q

D
UU
D
\H
OH
P
H
Q
W

&
K
D
U7
R
%
\
WH
6
LQ
J
OH
%
\W
H

LQ
G
H
[�

LQ
G
H
[
�

&
K
D
U7
R
%
\
WH
&
S
�
�
�
�

N
H
\

YD
OX
H

Q
H
[
W

G
H
IL
Q
LWL
R
Q

W\
S
H

&
OD
V
V
3
D
WK
(
Q
WU
\

V
X
E
G
LU
V

]L
S

)
LOH

G
LU

&
OD
V
V'
H
ILQ
LW
LR
Q

OR
FD
O1
D
P
H

R
X
WH
U&
OD
VV

ILH
OG
+
D
VK

R
X
WH
U)
LH
OG

ILU
V
W)
LH
OG

OD
VW
)
LH
OG

LQ
WH
UI
D
F
H
V

VX
S
H
U&
OD
VV

G
H
F
OD
UD
WLR
Q

VR
X
UF
H

6
WU
LQ
J

G
R
F
X
P
H
Q
WD
WL
R
Q

D
UU
D
\H
OH
P
H
Q
W

F
K
D
U>
@

+
D
VK
WD
E
OH
(
Q
WU
\

N
H
\Q

H
[
W

Y
D
OX
H

E
X
I

S
D
F
N
D
J
H
V

R
X
WS
X
W

FO
D
V
VH
V

S
D
WK

&
OD
V
V3
D
WK
(
Q
WU
\
>@

D
UU
D
\
H
OH
P
H
Q
W

YD
OX
H

N
H
\

Q
H
[
W

D
UU
D
\H
OH
P
H
Q
W

Y
D
OX
H

IG

D
UJ
7
\S
H
V

UH
WX
UQ
7
\S
H

%
LQ
D
U\
$
WW
UL
E
X
WH

D
WW
V

:
UL
WH
U

OR
F
N

)
LOH
2
X
WS
X
W6
WU
H
D
P

IG

:
UL
WH
U

OR
F
N

H
OH
P
H
Q
W'
D
WD

FK
D
U>
@

-
D
YD
3

OR
FD
O�
�

R
X
WS
X
W

F
OD
VV
/
LV
W

H
Q
Y

E
\W
H
>@

Q
D
P
H

G
D
WD

Q
H
[W

:
UL
WH
U

OR
F
D
O�
�

OR
FN

YD
OX
H

OLQ
H
6
H
S
D
UD
WR
U

R
X
W

FK
D
U>
@

FE

V
X
E
%
\W
H
V

&
K
D
U7
R
%
\
WH
'
H
ID
X
OW

S
D
WK
VW
U

IL
OH
6
H
S
D
UD
WR
U&
K
D
U

S
D
WK D

UU
D
\
H
OH
P
H
Q
W

WD
E
OH

)
LOW
H
U2
X
WS
X
W6
WU
H
D
P

R
X
W

D
UU
D
\H
OH
P
H
Q
W

D
UU
D
\H
OH
P
H
Q
W

S
D
WK

246

The figure shows multiple occurrences of the +DVKWDEOH class. Each +DVKWDEOH has
an array of +DVKWDEOH(QWULHV, and each +DVKWDEOH(QWU\ has a key and value. In
Java, the keys and values are declared as 2EMHFWV, but in most cases Ajax has been able
to resolve them to specific classes, revealing the actual keys and values of each Hashtable.
For example, we can see that /RFDO(QYLURQPHQW�SDFNDJHV is a Hashtable mapping
,GHQWLILHUV to 3DFNDJHV (in the dashed outline).

On the left hand side of the model are a number of occurrences of stream-related classes.
This part of the model reveals, for example, that the -DYD3 object’s RXWSXW field is a
3ULQW:ULWHU wrapping an 2XWSXW6WUHDP:ULWHU wrapping a 3ULQW6WUHDP
wrapping a %XIIHUHG2XWSXW6WUHDP wrapping a)LOH2XWSXW6WUHDP (as
indicated by the fat dashed arrows). Each of these Writer or Stream objects contains an RXW
field referencing the Writer or Stream it wraps. None of these relationships are apparent
from the Java class declarations alone, because the RXW fields are simply declared as
:ULWHU or 2XWSXW6WUHDP.

On the right hand side of the model is an 2EMHFW node with many edges leading into it,
e.g., from the NH\ and YDOXH fields of several Hashtables. Here the analysis was not
powerful enough to distinguish the objects referenced by the incoming fields or to precisely
determine their classes. The model reveals only that the referenced objects are either
6WULQJV, 1XPEHUV,)LHOG'HILQLWLRQV, &ODVV'HFODUDWLRQV, or subclasses
of one of those classes. This is a problem that becomes increasingly severe as the analyzed
programs grow: imprecision in the analysis leads to a few nodes covering a very large
number of different kinds of run-time objects. Field edges that lead to such nodes do not
convey much useful information.

A fundamental problem revealed by this example is that this graph is about as large as one
can usefully lay out and read. It has 96 nodes and 157 edges, and JavaP is a relatively small
Java program. As graphs get larger, it becomes rapidly more difficult to visualize them in
a reasonable way.

11.3.2 CTAS Example
Figure 11-15 shows the object model produced by Ajax applied to the CTAS example. The
setup is the same as for the previous example. This graph has 122 nodes and 166 edges.

This model reveals some interesting facts, e.g., that the SRVW5HFY+DQGOHUV,
VHQG+DQGOHUV and PDLQ5HFY+DQGOHUV of +DQGOHU0DQDJHU are all empty.
(They are used by other applications based on this code, but not by the test program under
analysis.) The model reveals that &RQQHFWLRQ0DQDJHU�VRFNHW4XHXH is a 9HFWRU
of 6RFNHWV, and is able to distinguish many different uses of CTAS’s +DQGOHU7DEOH
class.

On the negative side, again there is an 2EMHFW node covering a large number of different
kinds of objects, that seem to be unrelated but which are not being distinguished by the
analysis.

247

Figure 11-15. CTAS object model

Str
ing

ch
ar[

]

val
ue

ch
ar[

]
Fil

eD
esc

rip
tor

Ve
cto

r Ob
jec

t[]

ele
me

ntD
ata

Qu
eu

eO
utp

utS
tre

am

Qu
eu

e

q

Str
ing

va
lue

ch
ar[

]

Cl
ien

tT
yp

eF
ilte

r

Ai
rcr

aft
Ta

ble

Ha
sht

ab
le

air
cra

fts

Qu
eue

Inp
utS

tre
am

Qu
eu

e

q

Ha
sht

ab
leE

ntr
y[]

Ha
sh

tab
leE

ntr
y

arr
ay

ele
me

nt

Cl
ien

tFi
lte

r

Ve
cto

r

Ob
jec

t[]

ele
me

ntD
ata

Cl
ien

tFi
lte

r$O
rH

elp
er

Cl
ien

tFi
lte

r

on
e

tw
o

Se
rve

rSo
cke

t

Pla
inS

oc
ke

tIm
pl

im
pl

Pla
inS

oc
ke

tIm
pl

Ha
sht

ab
le

Ha
sht

ab
leE

ntr
y[]

tab
le

Cl
ien

tT
yp

eF
ilte

r

Ve
cto

r

Ob
jec

t[]

ele
me

ntD
ata

Ha
sht

ab
leE

ntr
y[]

Ha
sh

tab
leE

ntr
y

arr
ay

ele
me

nt

RA
M

ana
ge

r$1

RA
M

ana
ge

r

thi
s$0

M
ain

$1
$B

ala
nc

eR
As

Ti
me

dE
ve

nt

ram
gr

Ha
sht

ab
leE

ntr
y

nex
t

Ob
jec

t

va
lue

ke
y

arr
ay

ele
me

nt

Str
ing

va
lue

Ha
sht

ab
leE

ntr
y

nex
t

Ob
jec

t

ke
y

va
lue

Blo
cke

d_
slo

t_f
lig

ht_
inf

o_
st_

ob
j

Ha
sht

abl
e

Ha
sh

tab
leE

ntr
y[]

tab
le

Ma
in$

1

RA
M

an
age

r$2

thi
s$0

Fil
eD

esc
rip

tor
by

te[
]

Str
ing

va
lue

Ha
sht

ab
le Ha

sht
abl

eE
ntr

y[]

tab
le

Me
ter

_fi
x_

id_
st_

ob
j

Ha
sh

tab
leE

ntr
y[]

Str
ing

va
lue

RA
s

un
ass

ign
ed

aci
dR

As

De
fau

ltM
ess

ag
eP

roc
ess

or

me
ssa

ge
Pro

ces
sor

Ha
sht

ab
le

RA
Lo

ad
s

Ha
nd

ler
Ta

ble

Ha
sht

abl
e

han
dle

rs

Ob
jec

t[]

So
ck

et

arr
aye

lem
ent

Ha
nd

ler
Ta

ble

Ha
sht

ab
le

ha
nd

ler
s

Ha
sht

ab
leE

ntr
y[]

So
ck

etI
mp

l

fd

Ha
sht

ab
leE

ntr
y

nex
t

Ha
sht

abl
e

va
lue

Int
eg

er

ke
y

Ine
tA

dd
res

s

Str
ing

va
lue

Me
ssa

ge
Pro

ce
sso

r

air
cra

ftT
ab

le

raM
an

ag
er

Cli
ent

Gr
ou

pcli
en

tG
rou

p

arr
ay

ele
me

nt

Me
ter

_fi
x_

id_
st_

ob
j

Str
ing

va
lue

Cm
_ac

_st
_o

bj

Str
ing

id

Ha
sht

abl
eE

ntr
y

ne
xt

ke
y

va
lue

Sc
he

du
ler

loc
al-

1
loc

al-
3

loc
al-

2

Ve
cto

r

ev
en

ts

Ha
sh

tab
leE

ntr
y[]

arr
ay

ele
me

nt

Int
eg

er

C
on

ne
ct

io
nM

an
ag

er

loc
al-

1
loc

al-
3

loc
al-

2

ser
ver

sch
ed

ule
r

cli
en

tG
rou

p

Th
rea

d

t

Ve
cto

r

soc
ke

tQ
ue

ue

Cl
ien

tT
yp

eF
ilte

r

Ha
sht

ab
le

Ha
sht

ab
leE

ntr
y[]

tab
le

Ob
jec

t

So
ck

etI
mp

l

fd
add

res
s

Ma
in$

1$
CG

Sta
tus

cg

va
lue

ne
xt

key
Ha

sh
tab

leE
ntr

y

arr
aye

lem
en

t

Str
ing

va
lue

Ha
sht

abl
eE

ntr
y[]

arr
ay

ele
me

nt

Ai
rcr

aft

Ai
rcr

aft
Id

Cl
ien

t
Tim

ed
Ev

en
t

Ob
jec

t

Da
te

tab
le

Cli
en

tFi
lte

r

Ho
ld_

flig
ht_

inf
o_

st_
ob

j

Ha
nd

ler
Ta

ble

Ha
sh

tab
le

ha
nd

ler
s

cro
sse

d_
fid

sta
te

id

Fli
gh

t_p
lan

_st
_o

bj

fp
CT

AS
_fl

igh
t_i

nfo
_st

_o
bj

fi

id

Str
ing

va
lue

rou
te

de
stin

ati
on

_fi
x

atc
_ty

pe
fid

ak
a_

id

Str
ing

co
ord

ina
tio

n_
frd

Str
ing

co
ord

ina
tio

n_
fix

Str
ing

id

Str
ing

de
pa

rtu
re_

fix

Str
ing

typ
e

tab
le

M
ft_

st_
ob

j

M
ete

r_f
ix_

id_
st_

ob
j

fid

Str
ing

id

tab
le

tab
le

cli
ent

s
cli

en
tD

elH
an

dle
rs

cli
en

tA
dd

Ha
nd

ler
s

Ha
nd

ler
Ma

na
ger

ha
nd

ler
M

gr

soc
ke

tO
ut

so
ck

etI
n

cli
en

tG
rou

p

soc
ke

t

Me
ssa

ge

cur
M

sg

by
te[

]

va
lue

val
ue

act
iva

tio
nT

im
e

M
ain

$1
$C

hec
kIn

act
ive

Tim
edE

ve
nt

tab
le

by
te[

]

bu
ffe

r

me
ter

_li
st_

ind
ica

tor
blo

ck
ed_

slo
t_i

nfo
ho

st_
ak

_ro
ute

_s
trin

g
id

ho
ld_

inf
o

me
ter

ing
_fi

x_
tim

e
im

pl

na
me

Co
nn

ec
tio

nM
an

ag
er$

1

tar
ge

t

ch
ar[

]va
lue

ele
me

ntD
ata

va
lue

arr
ay

ele
me

nt

thi
s$

0

ma
inR

ecv
Ha

nd
ler

s
pre

Re
cv

Ha
nd

ler
s

sen
dH

an
dle

rs
po

stR
ec

vH
an

dle
rs

Ma
in$

def
Ha

nd
ler

def
au

ltR
ecv

Ha
nd

ler

tab
le

ke
y

va
lue

ne
xt

bu
ffe

r

cli
en

t

arr
ay

ele
me

nt

Ob
jec

t[]

ele
me

ntD
ata

mp

arr
ay

ele
me

nt

arr
ay

ele
me

nt

Str
ing

[]
loc

al-
0

ar
ra

ye
le

m
en

t

va
lue

val
ue

bu
ffe

r

act
ab

le

ram
an

ag
er

val
ue

ke
y

va
lue

ne
xt

248

11.3.3 Improving The Model By Discarding Information

11.3.3.1 Removing “Lumps”
Ajax object models for large programs are often crippled by the “large lump” problem,
where the analysis creates one or more 2EMHFW nodes covering a large number of different
kinds of objects that are not truly related. These “lumps” cause the model’s graph to be
overconstrained, making it difficult to lay out and obscuring useful information.

One way to extract some useful information from these models is to detect and remove
inaccurate “lumps” from the model graph. A useful heuristic is to remove nodes corre-
sponding to abstract objects whose most specific known superclass is 2EMHFW and which
have many incoming edges. The field edges leading to such nodes are annotated to indicate
that the referent of the field is not known. Nodes with many incoming edges especially
impede comprehensible graph layout using hierarchy-based layout tools such as GRW, so it
is especially advantageous to remove them.

This approach sacrifices some information in the hope that some of the remaining infor-
mation may still be useful to the user. A model that presents some information in a usable
form is more useful than an incomprehensibly large model.

11.3.3.2 Hiding Strings And Other Classes
As described in Section 8.4.3, most references to 6WULQJ objects are aliased because they
may refer to 6WULQJ objects extracted from the “constant pool”. Thus, in an object model,
most fields of type 6WULQJ lead to a common node. This clutters the graph layout with a
large number of long edges. Furthermore, few programmers are interested in disambigu-
ating 6WULQJ references even when this is possible. Therefore the Ajax object modeling
tool can optionally remove the common 6WULQJ node and annotate relevant field edges to
indicate that the referent is some unknown 6WULQJ.

The same technique can also be useful for other classes. The Ajax object modeling tool
allows the user to explicitly specify an arbitrary set of classes to be elided; optionally, all
subclasses of a specified class can be elided.

11.3.4 Jess Example
Figure 11-16 illustrates these techniques applied to an object model for the Java Expert
System Shell example. To produce a model of manageable size, the details of the stream-
related classes are elided by the tool using the techniques described in Section 11.3.3.2. The
rules for elision are specified manually. In this case the rules are:

249

250

Figure 11-16. Jess object model

O
b

je
ct

Je
ss

T
o

ke
nS

tr
ea

m

S
ta

ck

m
_s

ta
ck

S
tr

in
g

B
uf

fe
r

m
_

st
ri

ng

T
o

ke
ni

ze
r

m
_

st
re

am
O

bj
ec

t

S
tr

in
g

H
as

ht
ab

le
E

n
tr

y
[]

H
as

ht
ab

le
E

nt
ry

ar
ra

y
el

em
en

t

ne
xt

O
b

je
ct

va
lu

e

O
bj

ec
t

k
ey

H
as

ht
ab

l

H
as

h
ta

bl
eE

nt

ta
b

le

D
ef

te
m

p

S
tr

in
g

m
_d

oc
st

ri
n

g

V
al

u
eV

ec
to

r

m
_

de
ft

S
tr

in
g

m
_

na
m

e

V
ec

to
r

O
b

je
ct

[]

el
em

en
tD

at
a

H
as

ht
ab

le
E

n
tr

y
n

ex
t

O
bj

ec
t

ke
y

O
bj

ec
t

v
al

ue

O
bj

ec
t

R
et

e

H
as

h
ta

bl
eE

n
tr

y[
]

H
as

ht
ab

le
E

n
tr

y

ar
ra

ye
le

m
en

t

S
tr

in
g

H
as

h
ta

bl
eE

nt
ry

ne
x

t

B
o

ol
ea

n

va
lu

e

O
b

je
ct

k
ey

H
as

h
ta

b
le

E
nt

ry
[]

H
as

ht
ab

le
E

n
tr

y

ar
ra

y
el

em
en

t

m
_

do
cs

tr
in

g

H
as

h
ta

m
_b

in
d

in
gs

V
ec

to
r

m
_p

at
ts

m
_

S
tr

in
g

m
_

na
m

e

m
_

sa
li

en
ce

V
al

O
b

se
rv

ab
le

O
b

se
rv

er
[]

ar
r

V
ec

to
rob

s

N
u

ll
D

is
pl

ay

O
b

je
ct

ar
ra

ye
le

m
en

t

V
ec

to
r

O
b

je
ct

[]

el
em

en
tD

at
a

H
as

ht
ab

le
E

n
tr

y[

ta
bl

e

B
uf

fe
re

dI
np

ut
S

tr
ea

m

H
as

h
ta

bl
e

H
as

h
ta

bl
eE

n
tr

y[
]

ta
b

le

Je
sp

m
_e

ng
in

e

S
tr

in
g

JA
V

A
C

A
L

L

Je
ss

T
o

ke
nS

tr
ea

m

m
_j

ts

H
as

h
ta

bl
eE

n
tr

y
n

ex
t O
bj

ec
t

v
al

ue

O
bj

ec
t

ke
y

H
as

h
ta

b
le

E
nt

ry
[]

ar
ra

ye
le

m
en

t

T
es

t1
[]

[]

H
as

ht
ab

le
E

nt
r

ne
xt

va
lu

O
b

je
ct

ke
y

H
as

ht
ab

le

ta
b
le

O
b

je
ct

[]

D
ef

g
lo

b
al

B
in

d
in

g

m
_b

in
d

in
g

m
_e

n
gi

n
e

S
tr

in
g

H
as

ht
ab

le
E

v
al

u
e

ke
y

n
ex

t

O
b

je
ct

[]

P
at

te
rn

ar
ra

ye
le

m
en

t

ar
ra

ye
le

m
en

t

H
as

h
ta

b
le

ta
bl

e

H
as

h
ta

b
le

E
nt

ry
ne

xt O
bj

ec
t

v
al

u
e

O
bj

ec
t

ke
y

ch
ar

[]

va
lu

e

el
em

en
tD

at
a

O
bj

ec
t[

]

S
ta

ck
O

b
je

ct
[]

Je
ss

T
o

ke
n

ar
ra

y
el

em
en

t

m
_

io
s

S
tr

in
g

H
as

ht
ab

le
E

n
tr

y[
]

ar
ra

ye
le

m
en

t

m
_

te
st

s

S
tr

in
g

m
_c

la
ss

in
t[

]

m
_s

lo
tL

en
g

th
s

m
_d

ef
t

R
et

eC
om

pi
le

r

m
_

en
gi

n
e

S
tr

in
g

ar
ra

ye
le

m
en

t

H
as

h
ta

b
le

ta
bl

e

m
_v

al

S
tr

in
g

m
_n

am
e

O
bj

ec
t[

]

Je
ss

T
o

ke
n

ar
ra

ye
le

m
en

t

m
_

de
ft

em
p

la
te

s
m

_
fa

ct
s

m
_i

n
M

o
de

s
m

_j
es

p
m

_d
ef

g
lo

b
al

s
m

_i
n

W
ra

pp
er

s
m

_c
om

pi
le

r
m

_r
u

le
s

O
b

je
ct

m
_s

tr
at

eg
y

H
as

h
ta

bl
e

m
_o

ut
R

o
ut

er
s

H
as

h
ta

b
le

m
_

fu
n

ct
io

n
s

H
as

ht
ab

le

m
_

in
R

o
ut

er
s

V
ec

to
r

m
_c

le
ar

ab
le

s

T
ex

tI
np

ut
S

tr
ea

m

m
_

ti
s

m
_

di
sp

la
y

H
as

ht
ab

le

m
_d

ef
fa

ct
s

V
ec

to
r

m
_r

es
et

ab
le

s

va
lu

e

n
ex

t

O
b

je
ct

ke
y

H
as

ht
ab

le
E

n
tr

y[
]

ar
ra

y
el

em
en

t

H
as

ht
ab

le
E

n
tr

y[
]

ta
b

le
ta

b
le

m
_

sv
al

H
as

ht
ab

le
E

nt
ry

ar
ra

ye
le

m
en

t

ta
bl

e

ar
ra

ye
le

m
en

t

el
em

en
tD

at
a

el

ar
ra

ye
le

m
en

t

el
em

en
tD

at
a

O
bj

ec
t

O
u

tp
ut

S
tr

ea
m

S
tr

in
g

S
tr

in
gB

u
ff

er

v
al

ue

ta
b

le

ke
y

v
al

ue

ne
xt

m
_s

ta
ck

m
_s

tr
ea

m

m
_

st
ri

ng

m
_

sv
al

Je
sp

lo
ca

l-
9

m
_j

ts

JA
V

A
C

A
L

L
m

_e
n

gi
n

e

m
_v

D
ef

fa
ct

s

m
_

fa
ct

s
m

_d
oc

st
ri

ng

m
_e

ng
in

e

m
_

na
m

e

O
b

je
ct

[]

el
em

en
tD

at
a

ar
ra

y
el

em
en

t

ar

V
ec

to
r

el
em

en
tD

at
a

ke
y

va
lu

e

n
ex

t

V
ec

to
r

el
em

en
tD

at
a

251

Figure 11-16. Jess object model

V
ec

to
r

O
bj

ec
t[

]

el
em

en
tD

at
a

V
al

ue
[]

V
al

ue

ar
ra

ye
le

m
en

t

T
ok

en
m

_p
ar

en
t

m
_

ne
xt

V
al

u
eV

ec
to

r

m
_

fa
ct

F
u

nc
al

l

O
b

je
ct

m
_

fu
n

ca
ll

H
as

ht
ab

le H
as

ht
ab

le
E

n
tr

y
[]

ta
b

le

as
h

ta
bl

e

ab
le

E
nt

ry
[]

le

N
o

de
1

T
N

E
Q

ef
te

m
p

la
te

O
b

je
ct

N
od

e

S
uc

ce
ss

or
[]

m
_l

o
ca

lS
uc

c
m

_
en

gi
ne

N
o

de
T

er
m

N
o

de
T

es
t

V
ec

to
r

m
_

su
cc

N
o

de
1

E
va

lC
ac

h
e

m
_c

ac
h

e

S
uc

ce
ss

or

ar
ra

ye
le

m
en

t

V
ec

to
r

O
bj

ec
t[

]

el
em

en
tD

at
a

m
_n

od
e

V
ec

to
r

O
bj

ec
t[

]

el
em

en
tD

at
a

N
od

e1
T

E
Q

V
ec

to
r

O
b

je
ct

[]

el
em

en
tD

at
a

O
b

je
ct

D
ef

ru
le

m
_n

od
es

H
as

h
ta

b
le

g
s

m
_e

ng
in

e

V
ec

to
r

m
_a

ct
io

n
s

F
un

ca
ll

[]

m
_l

o
ca

lA
ct

io
n

s

V
al

ue
eE

n
tr

y[
]

e

F
un

ca
ll

S
ta

ck

F
un

ca
ll

[]

m
_

v

F
un

ca
ll

[]

F
u

nc
al

l

ar
ra

y
el

em
en

t

O
b

je
ct

[]

A
ct

iv
at

io
n

ar
ra

y
el

em
en

t

S
tr

in
g

T
es

t1

V
al

ue

m
_

sl
ot

V
al

ue

V
al

ue
V

ec
to

r V
al

ue
[]

m
_v

O
bj

ec
t

N
o

de
1T

E
L

N
V

ec
to

r

el
em

en
tD

at
a

S
tr

in
g

ab
le

E
nt

ry

O
b

je
ct

va
lu

e

bj
ec

t

O
bj

ec
t

m
_o

bj
ec

tv
al

D
ef

ru
le m
_

no
de

s
m

_
bi

n
di

n
gs

m
_n

am
e

m
_p

at
ts

m
_

en
gi

ne

S
tr

in
g

m
_d

oc
st

ri
ng

m
_

ac
ti

o
ns

m
_

lo
ca

lA
ct

io
ns

m
_

sa
li

en
ce

V
al

N
o

de
1

N
O

N
E

C
o

nt
ex

t

m
_b

in
d

in
g

s

m
_

pa
re

n
tm

_e
ng

in
e

m
_r

et
v

al

N
o

de
1T

E
C

T

T
o

ke
nT

re
e

m
_t

o
ke

n

m
_r

ig
ht

m
_l

ef
t

H
as

h
ta

bl
eE

nt
ry

[]

H
as

ht
ab

le
E

nt
ry

ar
ra

ye
le

m
en

t

ar
ra

y
el

em
en

t

ar
ra

ye
le

m
en

t

ht
ab

le
E

n
tr

y

al
u

e

O
b

je
ct

ar
ra

ye
le

m
en

t

ar
ra

y
el

em
en

t

H
as

ht
ab

le
E

n
tr

y

ar
ra

ye
le

m
en

t

N
o

de
1T

N
E

V
1

va
lu

e

ne
xt

O
bj

ec
t

ke
y

m
_

ro
o

ts

O
bj

ec
t[

]

ar
ra

y
el

em
en

t

en
t

B
in

d
in

g

m
_n

am
e

m
_v

al

V
al

ue
S

ta
ck

m
_

v

te
s

m
_

ac
ti

va
ti

on
s

m
_

gl
o

ba
lC

o
nt

ex
t

H
as

ht
ab

le

m
_s

to
ra

g
e

O
bj

ec
t

m
_

id
L

o
ck

N
o

de
1T

M
F

V
al

ue
S

ta
ck

V
al

ue
[]

m
_

v

ar
ra

y
el

em
en

t

N
od

e1
T

E
V

1

m
_a

ct
iv

at
io

ns
m

_
ru

le

m
_

te
st

s

N
od

e2
T

es
t[

]

m
_

lo
ca

lT
es

ts

O
b

je
ct

m
_

to
k

en

m
_r

u
le

m
_

nt

t

N
od

eN
o

t2

O
bj

ec
t[

]

el
em

en
tD

at
a

el
em

en
tD

at
a

m
_

v

N
o

de
1M

T
N

E
Q

N
o

de
1M

T
M

F
N

od
e1

M
T

E
L

N

m
_

va
lu

e N
o

de
1M

T
E

Q

O
b

je
ct

ar
ra

ye
le

m
en

t

F
un

ca
ll

S
ta

ck

m
_
v

T
o

ke
nT

re
e

m
_

to
k

en

m
_r

ig
ht

m
_

le
ft

ar
ra

y
el

em
en

t

ta
b

le

m
_

ri
gh

t
m

_
le

ft

V
al

ue
[]

ar
ra

ye
le

m
en

t

m
_o

bj
ec

tv
al

_
v

va
lu

e
k

ey

ne
xt

O
bj

ec
t

ar
ra

ye
le

m
en

t

m
_

ne
w

F
m

_
us

ed
V

m
_n

ew
V

m
_u

se
d

F

ar
ra

ye
le

m
en

t

ar
ra

y
el

em
en

t

O
b

je
ct

m
_

fu
nc

al
l

m
_o

bj
ec

tv
al

252

• Elide all lumps with more than seven incoming edges.

• Elide all 6WULQJV.

• Elide all subclasses of ,QSXW6WUHDP.

• Elide all subclasses of 2XWSXW6WUHDP.

As in the previous examples, this example reveals the contents of many of the container
objects. It also reveals some information that may be surprising; for example, the 5HWH’s
PBFOHDUDEOHV 9HFWRU is always empty. Also, there are (at least) two distinct instances
of the -HVS engine object.

This graph contains 189 nodes and 243 edges. The corresponding complete graph (without
any node elision) contains 885 nodes and 1173 edges. The complete graph is much too
complex to be automatically laid out in a comprehensible way. Therefore, although this
reduced graph contains less information, in practice it is much more useful because its
information is much more accessible.

This example shows one remaining problem with Ajax object models: it reveals
unimportant implementation details of library classes. For example, the details of the
implementation of +DVKWDEOH are revealed, when it would be better to simply show that
+DVKWDEOHV contain keys and values.

11.4 Conclusions

11.4.1 Contributions
Using the Ajax VPR, it is possible to construct heap graphs and object models. However,
inaccuracies in the analysis and the sheer size of the graphs produced can cripple the
usefulness of these graphs. Simple pruning countermeasures result in graphs that contain
accessible, useful and surprising information, even for large programs. This information
cannot be easily automatically obtained using other techniques, especially those that rely
on declared class information.

The Ajax VPR is not the ideal abstraction to use for computing heap graphs. Extensive
postprocessing is required. A tool with direct access to SEMI’s constraint structures would
be more efficient. Given the Ajax infrastructure, however, it seemed to be less work to
compute the heap graphs from the VPR than to bypass the VPR and hook into the SEMI
implementation.

11.4.2 Future Work
One major remaining problem with these models is that they have no notion of scope. In
particular, they expose the implementation of library data structures. Instead it would be
preferable to only show classes and fields visible to the user. On the other hand, sometimes
information about private fields is useful to the user — for example, the NH\ and YDOXH
fields of +DVKWDEOH(QWU\ convey very useful information. Heuristics or other
techniques to resolve this problem are an interesting area for future inquiry.

253

12 A Scanning Tool

12.1 Introduction
Programmers are adept at using simple tools such as “grep” to scan programs. More
advanced cross-referencing and scanning tools such as class browsers, indexed full-text
search engines, and hyperlinked source browsers such as LXR [91], are also very popular.
However, none of these tools are semantics-based; they use syntactic or lexical infor-
mation.

Using the Ajax analysis toolkit, it is not difficult to build similar tools that utilize semantic
information about the program. To demonstrate this, I built a simple example called
“JGrep”, and used it to reverse engineer some of the example programs.

12.2 The JGrep Tool

12.2.1 User Interface
JGrep has a simple “command line” interface, although it would be trivial to incorporate it
into a graphical or Web-based interface such as LXR. The user specifies the program to
analyze, and a program expression (including a code location). The expression need not
actually occur in the program text. JGrep reports information about all the objects which
might be returned as the result of the expression at the given location.

Four kinds of information are returned:

• New sites: all program locations where the objects are created.

• Call sites: all program locations where one of the objects is passed as the “this” param-
eter to a method call.

• Read sites: all program locations where a field of one of the objects is read.

• Write sites: all program locations where a field of one of the objects is written.

Since Ajax performs conservative analysis, some spurious sites may be returned along with
the true sites.

The user can control which kinds of sites are returned, using command line options.

12.2.2 Implementation
JGrep is easy to implement using the Ajax toolkit. It comprises 462 lines of code.
Collecting the sets of sites is a simple application of the value-point relation. The source set
S is a singleton set containing the user-specified expression, and the target set T contains
expressions for all the sites the user is interested in:

254

• New: The results of all “new” instructions, i.e., the top of the operand stack at the
instruction after each QHZ, QHZDUUD\, DQHZDUUD\ and PXOWLQHZDUUD\ instruc-
tion.

• Call: The stack element representing the “this” operand at every LQYRNHYLUWXDO,
LQYRNHVSHFLDO and LQYRNHLQWHUIDFH instruction.

• Read: The top of the operand stack at each JHWILHOG instruction.

• Write: The top of the operand stack at each SXWILHOG instruction.

The “intermediate data” propagated by the analysis are boolean values, initially set to false
and then set to true for the solitary source expression and all expressions reachable from it
in the analyzer’s graph. For each target expression receiving the value “true”, the tool prints
out the code location associated with that expression — i.e., the location of the “new”
instruction, the “call” instruction, the JHWILHOG instruction or the SXWILHOG
instruction.

JGrep currently accepts and prints code locations as the fully qualified name of a method
and a bytecode offset within that method, e.g., “MHVV�0DLQ�PDLQ�����ORFDO��” —
local variable 9 in class MHVV�0DLQ, method PDLQ, bytecode offset 373. It would be easy
— and highly desirable — to input and output source line numbers and source-level expres-
sions instead.

JGrep currently reanalyzes the program for every query, which means that there is a large
delay between posing a query and receiving an answer. However, it would be easy to have
JGrep run the analysis engine once and then answer a succession of queries.

12.3 Examples

12.3.1 Checking an Anomaly
The object model for Jess presented in Section 11.3.4 shows that the 5HWH’s
PBFOHDUDEOHV Vector is always empty. To investigate further, one simply submits to
JGrep an expression corresponding to a path to the desired node in the object model:

MHVV�0DLQ�PDLQ�����ORFDO���MHVV�-HVS�PBHQJLQH�

MHVV�5HWH�PBFOHDUDEOHV

This expression specifes local variable 9 at offset 373 in the method PDLQ in class
MHVV�0DLQ, a reference to the Jesp application object, followed by two field derefer-
ences: first, the dereference of field PBHQJLQH declared in class MHVV�-HVS, to get the
Rete engine, and then the dereference of field PBFOHDUDEOHV in class MHVV�5HWH.

The “New” and “Call” sites output are shown in Figure 12-1.

The single “NEW” site reveals immediately that the 9HFWRU is created in 5HWH’s
constructor (MHVV�5HWH��LQLW!). The call to MDYD�XWLO�9HFWRU�HOHPHQWV
shows that the 9HFWRU’s elements are scanned in the method 5HWH�FOHDU��. The call
to MDYD�XWLO�9HFWRU�UHPRYH$OO(OHPHQWV indicates that it is emptied in
5HWH�FOHDU��. There are no calls to methods that add elements to the 9HFWRU.

255

This information is helpful because it indicates to the programmer that if there were any
elements in the 9HFWRU, they could only be used in the method 5HWH�FOHDU. Therefore
further investigation of this anomaly should focus on that method. If such investigation
proves that an empty PBFOHDUDEOHV is benign, then the entire field can be removed and
we can be sure that no other code will be affected.

This example illustrates the power of the SEMI analysis; a simpler analysis such as RTA
would not have been able to distinguish the different 9HFWRUV used in the program.
Running “grep” over the Jess sources finds 43 occurrences of the name 9HFWRU, 5 occur-
rences of the name UHPRYH$OO(OHPHQWV, 27 occurrences of the name HOHPHQWV, 34
occurrences of the name HOHPHQW$W, and 22 occurrences of the name DGG(OHPHQW. It
would require significant effort to sort through these occurrences to find the three sites
specifically operating on the PBFOHDUDEOHV 9HFWRU.

12.3.2 Checking Field Accesses
In JavaC, there is a class %DWFK(QYLURQPHQW with a public IODJV field. It is natural
to wonder whether and how this field is accessed — is there an abstraction violation
occurring, and in what form? JGrep provides the answer, using a query for the read and
write accesses to the objects denoted by the expression:

VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW��LQLW!

�MDYD�LR�2XWSXW6WUHDP��VXQ�WRROV�MDYD�&ODVV3DWK��

VXQ�WRROV�MDYDF�(UURU&RQVXPHU���

�ORFDO��

This expression denotes the “this” objects of the most general constructor for
%DWFK(QYLURQPHQW. The results for the IODJV field are shown in Figure 12-2.

All the accesses are from one of three methods:

VXQ�WRROV�MDYDF�0DLQ�FRPSLOH (read and written)

VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�JHW)ODJV (read only)

VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�UHSRUW(UURU (read and written)

&$//�WR�PHWKRG�YRLG�MDYD�ODQJ�2EMHFW��LQLW!��
����2IIVHW���LQ�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!�LQW��LQW�
&$//�WR�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!�LQW��LQW�
����2IIVHW���LQ�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!�LQW�
&$//�WR�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!�LQW�
����2IIVHW���LQ�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!��
1(:�RI�FODVV�MDYD�XWLO�9HFWRU�
����2IIVHW�����LQ�PHWKRG�YRLG�MHVV�5HWH��LQLW!�MHVV�5HWH'LVSOD\�
&$//�WR�PHWKRG�YRLG�MDYD�XWLO�9HFWRU��LQLW!��
����2IIVHW�����LQ�PHWKRG�YRLG�MHVV�5HWH��LQLW!�MHVV�5HWH'LVSOD\�
&$//�WR�PHWKRG�MDYD�XWLO�(QXPHUDWLRQ�MDYD�XWLO�9HFWRU�HOHPHQWV��
����2IIVHW����LQ�PHWKRG�YRLG�MHVV�5HWH�FOHDU��
&$//�WR�PHWKRG�YRLG�MDYD�XWLO�9HFWRU�UHPRYH$OO(OHPHQWV��
����2IIVHW�����LQ�PHWKRG�YRLG�MHVV�5HWH�FOHDU��

Figure 12-1. Output of the creation sites and method calls on the PBFOHDUDEOHV object

256

Note that this example does not particularly benefit from SEMI. The same results are
obtained using Ajax’s RTA engine, because there is really only one instance of
%DWFK(QYLURQPHQW used in the program.

12.4 Conclusions
Using the alias information obtained by Ajax, it is easy to write simple and useful search
tools. These tools improve on the functionality available from lexical and syntactic tools in
a natural way. Additional postprocessing could improve the utility of the results, but even
the simplest approaches are useful. There is significant scope for new searching and visual-
ization tools based on these techniques.

5($'�IURP�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�ERROHDQ�
VXQ�WRROV�MDYDF�0DLQ�FRPSLOH�MDYD�ODQJ�6WULQJ>@�

:5,7(�WR�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�ERROHDQ�
VXQ�WRROV�MDYDF�0DLQ�FRPSLOH�MDYD�ODQJ�6WULQJ>@�

:5,7(�WR�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�ERROHDQ�
VXQ�WRROV�MDYDF�0DLQ�FRPSLOH�MDYD�ODQJ�6WULQJ>@�

5($'�IURP�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�ERROHDQ�
VXQ�WRROV�MDYDF�0DLQ�FRPSLOH�MDYD�ODQJ�6WULQJ>@�

5($'�IURP�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW���LQ�PHWKRG�LQW�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�JHW)ODJV��

5($'�IURP�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�YRLG�
VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�UHSRUW(UURU�MDYD�ODQJ�2EMHFW��LQW��
MDYD�ODQJ�6WULQJ��MDYD�ODQJ�6WULQJ�

:5,7(�WR�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW�����LQ�PHWKRG�YRLG�
VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�UHSRUW(UURU�MDYD�ODQJ�2EMHFW��LQW��
MDYD�ODQJ�6WULQJ��MDYD�ODQJ�6WULQJ�

:5,7(�WR�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW����LQ�PHWKRG�YRLG�
VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�UHSRUW(UURU�MDYD�ODQJ�2EMHFW��LQW��
MDYD�ODQJ�6WULQJ��MDYD�ODQJ�6WULQJ�

5($'�IURP�ILHOG��IODJV��RI�FODVV�VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�
����2IIVHW����LQ�PHWKRG�YRLG�
VXQ�WRROV�MDYDF�%DWFK(QYLURQPHQW�UHSRUW(UURU�MDYD�ODQJ�2EMHFW��LQW��
MDYD�ODQJ�6WULQJ��MDYD�ODQJ�6WULQJ�

Figure 12-2. Accesses to the IODJV field of %DWFK(QYLURQPHQW

257

13 Conclusions

13.1 Summary
Ajax demonstrates that sound, static, global alias analysis can be used as the basis for a
variety of software engineering tools. These tools produce interesting and nontrivial results
that cannot be obtained by other existing methods.

The Ajax design shows that it is practical to separate analysis implementations from tools
that consume alias information. The specification for an analysis engine is semantically
simple, as defined by the value-point relation, but powerful enough to enable cheap
construction of a wide range of tools. The interface is also efficient; for most configura-
tions, the scalability of the system is constrained by the scalability of the underlying
analysis and not by the overhead of the VPR interface. The exception is the object
modelling tool. It takes a significant amount of code and execution resources to reconstruct
a “heap graph” from the VPR, and also requires a strengthened definition of the VPR.

Ajax also shows that it is possible to implement the VPR interface using very different
analyses — RTA, based on declared language types, SEMI, based on polymorphic type
inference, and a hybrid analysis based on the “intersection” of these two analysis engines.
The strong separation between analyses and tools ensures that all tools work correctly
regardless of the analysis configuration. The analysis technique can be selected at run time
according to the desired accuracy for the task at hand and the execution resources available.
For example, for finding the set of possibly live methods, RTA is usually good enough, but
SEMI is much better for resolving virtual method calls, albeit more expensive.

The VPR interface also enables easy composition of analyses. It is trivial to build an
analysis that computes the intersection of the results of two or more other analyses. Ajax
can also provide “sequential composition”; for example, SEMI can use some other arbitrary
analysis to compute the call graph it uses to reduce programs to first order.

SEMI shows that type inference with polymorphic recursion can usefully be applied to
large Java programs, especially if the program is conservatively reduced to first-order code
before the application of SEMI. I have proven SEMI sound with respect to a simplified —
but still very rich — model of the Java bytecode, and shown that SEMI can even analyze
programs which do not conform to the static safety checks usually performed by Java.
SEMI provides a significant improvement in accuracy over a wide range of tools and
example programs, and well captures implicit type parametricity in Java programs, proving
a large percentage of downcasts safe in most programs. However, SEMI is less accurate in
larger programs, because imprecision in analyzing one part of the code spills over into other
parts of the code. Although SEMI can indeed analyze some large programs (Ladybug
having over 5,000 methods), its scalability in terms of resource consumption and accuracy
still leaves much to be desired.

258

Polymorphic recursion plays an interesting role in SEMI. I have described several
techniques required to make the SEMI implementation of polymorphic recursion practical.
The benefits of polymorphic recursion vary by tool: in the virtual call resolution tool,
polymorphic recursion improves accuracy only a little, but for checking downcasts,
unrestricted polymorphic recursion improves accuracy a great deal — but only when the
program is initially reduced to first order. The generality of the SEMI constraint solving
engine seems to limit its performance compared to other systems based on Hindley-Milner
type inference [54] [69].

My work shows that composing RTA and SEMI by intersection is very useful. RTA is so
cheap that performance is not noticeably affected, and for many tools the combined
analyses are significantly more accurate than either analysis alone.

Most of the Ajax tools were easy and cheap to build. Of all the tools, I personally feel that
the most immediately useful is “JGrep”, having used it myself to reverse-engineer some of
the example programs for which source code is not available. It is very useful to be able to
track down all accesses to one instance of a commonly reused class. The object modelling
tool demonstrates that starting with alias information and transforming it into an object
model can produce more precise models than existing techniques, which start with a class
hierarchy model and improve its precision using heuristics or other analysis [46].

Accounting for the behavior of non-Java code — i.e., native code and reflection — required
a great deal of work. This is an important problem because real programs (especially the
standard Java libraries) use these features often, and in a variety of ways. Ajax provides
thorough handling of non-Java code by accepting specifications describing how non-Java
code is used by the application. However, unavailability of the whole program remains a
fundamental problem.

13.2 Outlook
There are many possible future directions for this work:

• SEMI is too slow at analyzing very large programs. It may be possible to reimplement a
similar analysis to achieve much higher performance, perhaps using a design similar to
Ruf’s escape analysis for Java [69]. Alternatively, it may be possible to design a sim-
pler analysis with some of the desirable features of SEMI.

• SEMI’s accuracy degrades as program size increases. Addressing this may required
improved analysis techniques. Some limited flow-sensitive analysis might improve
accuracy, as might tighter integration of language type information into SEMI’s com-
putations. One improvement that would be almost certain to provide increased accu-
racy would be the introduction and use of “parity annotations” on instance constraints,
as described by Fähndrich, Rehof and Das [31].

• It would be very interesting to implement more analyses in the Ajax framework. Ajax
provides a great deal of infrastructure to make it easier to implement analyses. Ajax
also provides a tool suite; once an analysis has been implemented, it can be immedi-
ately applied to a wide range of problems. Analysis composition is also very easy in
Ajax, and can compensate for weaknesses in one particular analysis technique. Also,

259

because Ajax provides a single description of the behavior of non-Java code and a fixed
specification of sound analysis results, it is both easy and fair to compare the accuracy
and performance of different analyses implemented in Ajax.

• The VPR is not the ultimate abstraction of program behavior. It has very limited
expression of context: for example, it is impossible to ask whether two expressions in a
method get the same value during the same invocation of the method. It is also impossi-
ble to specify that an expression should apply not just at a particular program point, but
also when its method has a particular caller. SEMI can capture some of this informa-
tion. The VPR could be extended to allow this information to be communicated to
tools.

• The VPR could also be extended to accomodate different behaviors of tags in the
tagged bytecode semantics. For example, one might wish to have addition take two
operands with the same tag and return a result with the same tag as the operands. Thus
an expression referring to the result of an addition would match an expression referring
to one of the operands. This would allow Ajax to address additional tasks.

• More tools could easily be built in the Ajax framework. Accessible alias analysis opens
up many possibilities for new tools for various programmer tasks.

• Sound, global, static analysis of Java programs is inherently difficult because Java pro-
grams use Java features that are not amenable to static analysis, such as reflection. Fur-
thermore, modern software environments consist of dynamically configured
components, often interacting over channels not amenable to static analysis, e.g., by
exchanging XML data. Thus many applications are not amenable to sound global static
analysis.

• It may be necessary to perform local static analysis. In particular, it would be inter-
esting to make “worst case” assumptions about missing code and then measure the
accuracy of the resulting analyses. It would also be interesting to introduce “reason-
able” heuristics to approximate the behavior of missing code and then measure anal-
ysis accuracy.

• It is easy to change the definition of the VPR to quantify over some fixed finite set of
program traces (e.g., some program traces that have actually been obtained by run-
ning the program) instead of all traces. An Ajax analysis could compute a precise
VPR for a program by running it on test data and recording the execution. The exist-
ing Ajax tools would be immediately usable with this dynamic analysis.

I predict that in the forseeable future, tasks such as program understanding, which do not
absolutely require sound static analysis of code, will best be addressed by other means, such
as dynamic analysis or unsound static analysis. Tasks which do require sound static
analysis, such as compilers or verification tools, will need to perform local analysis of
individual components, relying on whatever explicit (run time checkable) annotations exist
at component boundaries to specify the behavior of “external” code.

260

261

Bibliography

[1] O. Agesen. The Cartesian Product Algorithm: Simple And Precise Type Inference
Of Parametric Polymorphism. Proceedings of the 9th European Conference on
Object-Oriented Programming, Åarhus, Denmark, August 1995, Springer-Verlag
LNCS 952, pp. 2-26.

[2] A. Aiken, M. Fähndrich, J. Foster and Z. Su. A Toolkit For Constructing Type- And
Constraint-Based Program Analyses. Proceedings of the Second International
Workshop on Types in Compilation, Kyoto, Japan, March 1998, Springer-Verlag
LNCS 1473, pp. 78-96.

[3] A. Aiken and E. Wimmers. Type Inclusion Constraints And Type Inference. Pro-
ceedings of the International Conference on Functional Programming Languages
and Computer Architecture, Copenhagen, Denmark, June 1993, pp. 31-41.

[4] J. Aldrich, C. Chambers, E. Gun Sirer, and S. Eggers. Static Analyses For Eliminat-
ing Unnecessary Synchronization From Java Programs. Proceedings of the 6th
International Static Analysis Symposium, September 1999, Springer-Verlag LNCS
1694, pp. 19-38.

[5] L. Andersen. Program Analysis and Specialization For The C Programming Lan-
guage. Technical Report 94-19, University of Copenhagen, Copenhagen, Denmark,
1994.

[6] J. Ashley and R. Dybvig. A Practical And Flexible Flow Analysis For Higher-Order
Languages. ACM Transactions on Programming Languages and Systems, Volume
20, No. 4, July 1998, pp. 845-868.

[7] R. Bowdidge and W. Griswold. Automated Support For Encapsulating Abstract
Data Types. Proceedings of the ACM Conference On Foundations of Software
Engineering, New Orleans, USA, December 1994, pp. 97-110.

[8] A. Bondorf and J. Jørgensen. Efficient Analyses For Realistic Off-line Partial Eval-
uation. Journal of Functional Programming, Volume 3, No. 3, July 1993, pp. 315-
346.

262

[9] D. Bacon and P. Sweeney. Fast Static Analysis Of C++ Virtual Function Calls. Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Object-Oriented Programming
Systems, Languages and Applications, San Jose, USA, October 1996, pp. 324-341.

[10] B. Blanchet. Escape Analysis For Object-Oriented Languages: Application To Java.
Proceedings of the ACM SIGPLAN ’99 Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Denver, USA, November 1999, pp. 20-
34.

[11] J. Bogda and U. Hölzle. Removing Unnecessary Synchronization In Java. Proceed-
ings of the ACM SIGPLAN '99 Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, Denver, USA, November 1999, pp. 35-46.

[12] J. Boyland and A. Greenhouse. May Equal: A New Alias Question. Presented at the
Intercontinental Workshop on Aliasing in Object Oriented Systems, Lisbon, Portu-
gal, June 1999.

[13] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler. Making The Future Safe For
The Past: Adding Genericity To The Java Programming Language. Proceedings of
the ACM SIGPLAN '98 Conference on Object-Oriented Programming Systems,
Languages and Applications, Vancouver, Canada, October 1998, pp. 183-200.

[14] R. Chatterjee, B. Ryder and W. Landi. Relevant Context Inference. Proceedings of
the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Antonio, USA, January 1999, pp. 133-146.

[15] Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C Information Abstraction
System. IEEE Transactions on Software Engineering, Volume 16, No. 3, March
1990, pp. 325-334.

[16] B. Cheng and W. Hwu. Modular Interprocedural Pointer Analysis Using Access
Paths: Design, Implementation, And Evaluation. Proceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language Design and Implementation,
Vancouver, Canada, June 2000, p. 57-69.

[17] J. Choi, M. Gupta, M. Serrano, V. Sreedhar and S. Midkiff. Escape Analysis For
Java. Proceedings of the ACM SIGPLAN '99 Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Denver, USA, November 1999,
pp. 1-19.

263

[18] M. Cierniak, G. Lueh and J. Stichnoth. Practicing JUDO: Java Under Dynamic
Optimizations. Proceedings of the ACM SIGPLAN ’00 Conference on Program-
ming Language Design and Implementation, Vancouver, Canada, June 2000, pp. 13-
26.

[19] M. Das. Unification-Based Pointer Analysis With Directional Assignments. Pro-
ceedings of the ACM SIGPLAN ’00 Conference on Programming Language Design
and Implementation, Vancouver, Canada, June 2000, pp. 35-46.

[20] J. Dean, D. Grove, and C. Chambers. Optimization Of Object-Oriented Programs
Using Static Class Hierarchy Analysis. Proceedings of the 9th European Conference
on Object-Oriented Programming, Åarhus, Denmark, August 1995, Springer-Verlag
LNCS 952, pp. 77-101.

[21] G. DeFouw, D. Grove and C. Chambers. Fast Interprocedural Class Analysis. Pro-
ceedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, USA, January 1998, pp. 222-236.

[22] A. Diwan, J. Moss, and K. McKinley. Simple And Effective Analysis Of Statically-
Typed Object-Oriented Programs. Proceedings of the ACM SIGPLAN '96 Confer-
ence on Object-Oriented Programming Systems, Languages and Applications, San
Jose, USA, October 1996, pp. 292-305.

[23] A. Diwan, J. Moss, and K. McKinley. Type-Based Alias Analysis. Proceedings of
the ACM SIGPLAN ’98 Conference on Programming Language Design and Imple-
mentation, Montreal, Canada, June 1998, pp. 106-117.

[24] J. Dolby and A. Chien. An Automatic Object Inlining Optimization And Its Evalua-
tion. Proceedings of the ACM SIGPLAN ’00 Conference on Programming Lan-
guage Design and Implementation, Vancouver, Canada, June 2000, pp. 345-357.

[25] D. Duggan. Modular Type-Based Reverse Engineering Of Parameterized Types In
Java Code. Proceedings of the ACM SIGPLAN '99 Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, USA, November
1999, pp. 97-113.

[26] P. Eidorff, F. Henglein, C. Mossin, H. Niss, M. Sørensen and M. Tofte.
AnnoDomini: From Type Theory To Year 2000 Conversion Tool. Proceedings of the
26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, USA, January 1999, pp. 1-14.

264

[27] J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Inference For Objects.
Proceedings of the ACM SIGPLAN ’95 Conference on Object-Oriented Program-
ming Systems, Languages and Applications, Austin, USA, October 1995, pp. 169-
184.

[28] M. Fähndrich. BANE: A Library for Scalable Constraint-Based Program Analysis.
PhD Thesis, Computer Science Division, University of California, Berkeley, USA,
March 1999.

[29] M. Fähndrich and A. Aiken. Program Analysis Using Mixed Term And Set Con-
straints. Proceedings of the 4th International Static Analysis Symposium, September
1997, Springer-Verlag LNCS 1302, pp. 114-126.

[30] M. Fähndrich, J. Foster, Z. Su and A. Aiken. Partial Online Cycle Elimination In
Inclusion Constraint Graphs. Proceedings of the ACM SIGPLAN ’98 Conference
on Programming Language Design and Implementation, Montreal, Canada, June
1998, pp. 85-96.

[31] M. Fähndrich, J. Rehof and M. Das. Scalable Context-Sensitive Flow Analysis
Using Instantiation Constraints. Proceedings of the ACM SIGPLAN ’00 Conference
on Programming Language Design and Implementation, Vancouver, Canada, June
2000, pp. 253-263.

[32] M. Fernandez, Simple And Effective Link-Time Optimization Of Modula-3 Pro-
grams. Proceedings of the ACM SIGPLAN '95 Conference on Programming Lan-
guage Design and Implementation, La Jolla, USA, June 1995, pp. 103-115.

[33] C. Flanagan and M. Felleisen. Componential Set-Based Analysis. ACM Transac-
tions on Programming Languages and Systems, Volume 21, No. 2, March 1999, pp.
370-416.

[34] J. Foster, M. Fähndrich and A. Aiken. Polymorphic Versus Monomorphic Flow-
Insensitive Points-To Analysis For C. Proceedings of the 7th International Static
Analysis Symposium, September 2000, Springer-Verlag LNCS 1824, pp. 175-198.

[35] E. Friedman-Hill. Jess, The Java Expert System Shell. Technical Report SAND98-
8206 (revised), Distributed Computing Systems, Sandia National Laboratories, Liv-
ermore, California, January 2000.

265

[36] E. Gansner and S. North. An Open Graph Visualization System And Its Applica-
tions To Software Engineering. Software Practice and Experience, Volume 30, No.
11, September 2000, pp. 1203-1233.

[37] D. Grove, G. DeFouw, J. Dean and C. Chambers. Call Graph Construction In
Object-Oriented Languages. Proceedings of the ACM SIGPLAN ’97 Conference on
Object-Oriented Programming Systems, Languages and Applications, Atlanta,
USA, October 1997, pp. 108-124.

[38] D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 Reference Manual.
Technical Report MIT/LCS/TR-407, MIT Laboratory for Computer Science, Bos-
ton, USA, September 1987.

[39] N. Heintze. Set-Based Analysis Of ML Programs. Proceedings of the ACM Confer-
ence on Lisp and Functional Programming, Orlando, USA, June 1994, pp. 306-317.

[40] N. Heintze. Control-Flow Analysis And Type Systems. Proceedings of the 2nd
Static Analysis Symposium, September 1995, Springer-Verlag LNCS 983, pp. 189-
206.

[41] N. Heintze and D. McAllester. Linear-Time Subtransitive Control Flow Analysis.
Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation, Las Vegas, USA, June 1997, pp. 261-272.

[42] F. Henglein. Type Inference With Polymorphic Recursion. ACM Transactions on
Programming Languages and Systems, Volume 15, No. 2, April 1993, pp. 253-289.

[43] D. Jackson and J. Chapin. Redesigning Air-Traffic Control: A Case Study In Soft-
ware Design. IEEE Software, Volume 17, No. 3, May/June 2000, pp. 63-70.

[44] D. Jackson, S. Jha and C. Damon. Isomorph-Free Model Enumeration. ACM Trans-
actions on Programming Languages and Systems, Volume 20, No. 2, March 1998,
pp. 302-343.

[45] D. Jackson and E. Rollins. Abstractions Of Program Dependencies For Reverse
Engineering. Proceedings of the ACM Conference On Foundations of Software
Engineering, New Orleans, USA, December 1994, pp. 2-10.

[46] D. Jackson and A. Waingold. Lightweight Extraction Of Object Models From Byte-
code. Proceedings of the 1999 International Conference on Software Engineering,
Los Angeles, USA, May 1999, pp. 194-202.

266

[47] S. Jagannathan and S. Weeks. A Unified Treatment Of Flow Analysis In Higher-
Order Languages. Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Francisco, USA, January
1995, pp. 393-407.

[48] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition.
Addison Wesley, 1997.

[49] R. Milner. A Theory Of Type Polymorphism In Programming. Journal of Computer
and System Sciences, Volume 17, 1978, pp. 348-375.

[50] R. Milner, M. Tofte and R. Harper. The Definition Of Standard ML. MIT Press,
1990.

[51] G. Murphy and D. Notkin. Lightweight Source Model Extraction. Proceedings of
the ACM Conference On Foundations of Software Engineering, Washington DC,
USA, October 1995, pp. 116-127.

[52] G. Murphy and D. Notkin. Software Reflexion Models: Bridging The Gap Between
Source And High-Level Models. Proceedings of the ACM Conference On Founda-
tions of Software Engineering, Washington DC, USA, October 1995, pp. 18-28.

[53] R. O’Callahan. A Simple, Comprehensive Type System For Java Bytecode Subrou-
tines. Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, USA, January 1999, pp. 70-
78.

[54] R. O'Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based On
Type Inference. Proceedings of the 1997 International Conference on Software
Engineering, Boston, USA, 1997, p. 338-348.

[55] R. O'Callahan and D. Jackson. Lackwit: Large-Scale Analysis Of C Programs Using
Type Inference. Technical Report CMU-CS-96-130, Carnegie Mellon University
Computer Science Department, 1996.

[56] N. Oxhøj, J. Palsberg and M. Schwartzbach. Making Type Inference Practical. Pro-
ceedings of the 6th European Conference on Object-Oriented Programming, Utre-
cht, The Netherlands, June 1992, Springer-Verlag LNCS 615, pp. 329-349.

[57] J. Palsberg. Efficient Inference Of Object Types. Information and Computation, Vol-
ume 123, No. 2, 1995, pp. 198-209.

267

[58] J. Palsberg and P. O’Keefe. A Type System Equivalent To Flow Analysis. ACM
Transactions on Programming Languages and Systems, Volume 17, No. 4, July
1995, pp. 576-599.

[59] J. Palsberg and C. Pavlopoulou. From Polyvariant Flow Information To Intersection
And Union Types. Proceedings of the 25th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Diego, USA, January 1998,
pp. 197-208.

[60] J. Palsberg and M. Schwartzbach. Object-Oriented Type Inference. Proceedings of
the ACM SIGPLAN ’91 Conference on Object-Oriented Programming Systems,
Languages and Applications, Phoenix, USA, October 1991, pp. 146-161.

[61] X. Leroy and F. Pessaux. Type-Based Analysis Of Uncaught Exceptions. ACM
Transactions on Programming Languages and Systems, Volume 22, No. 2, March
2000, pp. 340-377.

[62] D. Liang and M. Harrold. Efficient Points-to Analysis For Whole-Program Analy-
sis. Proceedings of the ACM Conference On Foundations of Software Engineering,
Toulouse, France, September 1999, Springer-Verlag LNCS 1687, pp. 199-215.

[63] J. Plevyak. Optimization Of Object-Oriented And Concurrent Programs. PhD The-
sis, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1996.

[64] Z. Qian. A Formal Specification Of Java Virtual Machine Instructions. Technical
Report, Universitat Bremen, Bremen, Germany, November 1997.

[65] D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension Of
ML. Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, January 1997, pp. 40-53.

[66] A. Rountev, A. Milanova, and B. Ryder. Points-to Analysis For Java Using Anno-
tated Inclusion Constraints. Technical Report DCS-TR-417, Department of Com-
puter Science, Rutgers University, Piscataway, USA, July 2000.

[67] E. Ruf. Context-Insensitive Alias Analysis Reconsidered. Proceedings of the ACM
SIGPLAN '95 Conference on Programming Language Design and Implementation,
La Jolla, USA, June 1995, pp. 13-22.

268

[68] E. Ruf. Partitioning Data Flow Analysis Using Types. Proceedings of the 24th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Paris, France, January 1997, pp. 15-26.

[69] E. Ruf. Effective Synchronization Removal For Java. Proceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language Design and Implementation, Van-
couver, Canada, June 2000, pp. 208-218.

[70] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object Oriented
Modeling And Design, Prentice Hall, 1991.

[71] O. Shivers. Control Flow Analysis In Scheme. Proceedings of the ACM SIGPLAN
’88 Conference on Programming Language Design and Implementation, Atlanta,,
USA, June 1988, pp. 164-174.

[72] B. Steensgaard. Points-To Analysis In Almost Linear Time. Proceedings of the 23rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, USA, January 1996, pp. 32-41.

[73] B. Steensgaard. Points-To Analysis By Type Inference Of Programs With Structures
And Unions. Proceedings of the 1996 International Conference on Compiler Con-
struction, Springer-Verlag LNCS 1060, April 1996, pp. 136-150.

[74] P. Stocks, B. Ryder, and W. Landi. Comparing Flow- And Context-Sensitivity On
The Modification-Side-Effects Problem. Technical Report DCS-TR-335, Depart-
ment of Computer Science, Rutgers University, August 1997.

[75] Z. Su, M. Fähndrich and A. Aiken. Projection Merging: Reducing Redundancies In
Inclusion Constraint Graphs. Proceedings of the 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Boston, USA, Jan-
uary 2000, pp. 81-95.

[76] V. Sundaresan, L. Hendren, C. Razafimahefa, R Vallee-Rai, P. Lam, E. Gagnon, C.
Godin. Practical Virtual Method Call Resolution For Java. Proceedings of the ACM
SIGPLAN '00 Conference on Object-Oriented Programming Systems, Languages
and Applications, Minneapolis, USA, October 2000, pp. 264-280.

[77] J.-P. Talpin and P. Jouvelot. The Type And Effect Discipline. Proceedings of the
7th IEEE Symposium on Logic in Computer Science, IEEE Computer Society
Press, Santa Cruz, USA, 1992, pp. 162-173.

269

[78] F. Tip. A Survey Of Program Slicing Techniques. Journal of Programming Lan-
guages, Vol. 3, No. 3, September 1995, pp. 121-189.

[79] F. Tip, C. Laffra, P. Sweeney and D. Streeter. Practical Experience With An Applica-
tion Extractor For Java. Proceedings of the ACM SIGPLAN ’99 Conference on
Object-Oriented Programming Systems, Languages and Applications, Denver,
USA, November 1999, p. 292-305.

[80] F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction Algo-
rithms. Proceedings of the ACM SIGPLAN ’00 Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Minneapolis, USA, October 2000,
pp. 281-293.

[81] M. Tofte and J.-P. Taplin. Implementation Of The Typed Call-By-Value l-Calculus
Using A Stack of Regions. Proceedings of the 21st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, USA,
January 1994, pp. 188-201.

[82] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, Volume
10, No. 7, July 1984, pp. 352-357.

[83] J. Whaley and M. Rinard. Compositional Pointer And Escape Analysis For Java
Programs. Proceedings of the ACM SIGPLAN ’99 Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, USA, November
1999, pp. 187-206.

[84] R. Wilson and M. Lam. Efficient Context-Sensitive Pointer Analysis For C Pro-
grams. Proceedings of the ACM SIGPLAN ’95 Conference on Programming Lan-
guage Design and Implementation, La Jolla, USA, June 1995, pp. 1-12.

[85] A. Wright and R. Cartwright. A Practical Soft Type System For Scheme. Proceed-
ings of the 1994 ACM Conference on Lisp and Functional Programming, Orlando,
Florida, June 1994, pp. 250-262.

[86] S. Zhang, B. Ryder, and W. Landi. Program Decomposition For Pointer Aliasing: A
Step Towards Practical Analyses. Proceedings of the 4th Annual ACM Symposium
on the Foundations of Software Engineering, San Francisco, USA, October 1996,
pp. 81-92.

270

[87] S. Zhang, B. Ryder and W. Landi. Experiments With Combined Analysis For
Pointer Aliasing. Proceedings of the ACM SIGPLAN Workshop on Program Analy-
sis for Software Tools and Engineering, Montreal, Canada, June 1998, pp. 11-18.

[88] Bugzilla Project Home Page.
KWWS���ZZZ�PR]LOOD�RUJ�SURMHFWV�EXJ]LOOD

[89] CodeSurfer Home Page.
KWWS���ZZZ�FRGHVXUIHU�FRP

[90] Imagix Corporation Home Page
KWWS���ZZZ�LPDJL[�FRP

[91] Linux Cross Reference
KWWS���O[U�OLQX[�QR

271

Appendix A: Polymorphic Recursion, Unrestricted
Recursive Types and Principal Types
&RQVLGHU�D�VWDQGDUG�ODPEGD�ODQJXDJH�ZLWK�D�W\SH�V\VWHP�KDYLQJ�SRO\PRUSKLF�UHFXUVLRQ�DQG�
XQUHVWULFWHG��m��UHFXUVLYH�W\SHV��,�SURYH�WKDW�WKHUH�H[LVW�W\SDEOH�SURJUDP�WHUPV�WKDW�KDYH�QR�
SULQFLSDO�W\SH�

A.1 Intuition
,Q�WKH�VHWWLQJ�RI�m�UHFXUVLYH�W\SHV��D�W\SH�7�IRU�D�WHUP�I�LV�SULQFLSDO�LII�7�LV�D�W\SH�RI�I�DQG�
HYHU\�W\SH�RI�I�LV�HTXLYDOHQW�WR�DQ�LQVWDQFH�RI�7��ZKHUH�W\SH�HTXLYDOHQFH�PHDQV�WKDW�WKH�
�SRVVLEO\�LQILQLWH��UHJXODU�ODEHOOHG�WUHHV�FRUUHVSRQGLQJ�WR�WKH�W\SHV�DUH�LGHQWLFDO�

Consider the following function, written in ML-like syntax:

IXQ�I��D��E�� �I�E

This function is typable using polymorphic recursion and unrestricted recursive types, but
there is no principal type. A list of valid types is below. All free variables are assumed to
be universally quantified.

�mW��Y���W����X

Z����mW��Y���W����X

[����Z����mW��Y���W�����X

,QIRUPDOO\�ZH�FRXOG�ZULWH�WKHVH�W\SHV�DV�³�Y���Y���Y��«������X´��³�Z� �Y� �Y� �Y� «����� X´��
DQG�³�[���Z� �Y� �Y� �Y� «������ X´��7KLV�OHDGV�WR�WKH�LQWXLWLRQ�WKDW�WKH�SULQFLSDO�W\SH�ZRXOG�
QHHG�WR�KDYH�DQ�XQERXQGHG�QXPEHU�RI�TXDQWLILHG�YDULDEOHV�²�EXW�VXFK�W\SHV�GR�QRW�H[LVW�

A.2 Proof
More formally, suppose T is the principal type of the function I given above. We show that
this leads to a contradiction.

Let m be the number of free variables in T. Define

-�� �mW��Y���W

-
Q
� �Z

Q
���-

Q�� �Q�!���

)RU�DOO�Q��-Q���X�LV�D�W\SH�RI�I��7KLV�LV�HDVLO\�VKRZQ�E\�LQGXFWLRQ�RQ�Q�

7KHUHIRUH�WKHUH�LV�D�VXEVWLWXWLRQ�6�VXFK�WKDW�6�7��LV�HTXLYDOHQW�WR�-
P
� X��-

P
���X�KDV�PRUH�

IUHH�YDULDEOHV�WKDQ�7��WKHUHIRUH��WKHUH�LV�D�IUHH�YDULDEOH�RI�7��UHIHUUHG�WR�DV�H��VXFK�WKDW�6�
PDSV�H�WR�D�WHUP�HTXLYDOHQW�WR�D�VXEWHUP�RI�-P� X�FRQWDLQLQJ�DW�OHDVW�WZR�IUHH�YDULDEOHV��,�
ZLOO�UHIHU�WR�WKH�ODWWHU�VXEWHUP�DV�WKH�³H[SDQVLRQ�WHUP´��7KHVH�DUH�WKH�VXEWHUPV�RI�-

P
���X��

PRGXOR�HTXLYDOHQFH�

1. -P���X

2. X

3. -
L
������L���P�

272

4. Z
L
������L���P�

5. Y

6. mW��Y���W

&DVHV���������DQG���GR�QRW�FRQWDLQ�DW�OHDVW�WZR�IUHH�YDULDEOHV��KHQFH�FDQQRW�EH�WKH�H[SDQVLRQ�
WHUP��&DVH���FDQQRW�EH�WKH�H[SDQVLRQ�WHUP��IRU�WKHQ�7� �H, a single free variable,�ZKLFK�LV�
QRW�D�W\SH�RI�I��7KHUHIRUH�WKH�H[SDQVLRQ�WHUP�LV�-L��IRU�VRPH�L������L���P��

/HW�6
�EH�WKH�VDPH�VXEVWLWXWLRQ�DV�6�H[FHSW�WKDW�H�LV�PDSSHG�WR�³LQW´��6
�7��LV�HTXLYDOHQW�WR�
WKH�WUHH�IRU�-

P
� X�ZLWK�RQH�RU�PRUH�VXEWUHHV�HTXLYDOHQW�WR�-

L
�UHSODFHG�E\�³LQW´��%XW�VLQFH�

ZL�RFFXUV�MXVW�RQFH�LQ�WKH�WUHH�IRU�³-P� X´��WKHUH�LV�RQO\�RQH�VXFK�VXEWUHH�²�WKH�DFWXDO�
RFFXUUUHQFH�RI�-

L
�LQWURGXFHG�E\�WKH�SURGXFWLRQ�UXOHV��7KHUHIRUH�6
�7�� �.

P
���X�ZKHUH

Ki = int
.
Q
� �Z

Q
���.

Q�� �Q�!���

,W�LV�HDV\�WR�VHH�WKDW�WKLV�LV�QRW�D�W\SH�RI�I��YLRODWLQJ�WKH�DVVXPSWLRQ�WKDW�7�LV�D�SULQFLSDO�W\SH�

A.3 Comments
The principal type T of a term in Henglein’s type system is also a valid type of the term
when the type system has recursive types. The reason that principal typing fails is because
the addition of recursive types may allow new types for the term which are not instances of
T.

273

274

275

Appendix B: Ajax Foreign Code Specifications
I provide the complete text of the foreign code specifications used by Ajax. They cover a
large part of the JDK 1.1 class library for Windows, but not all of the library. I provide the
specifications to indicate how extensive they are and how much modelling is required.
Also, the curious reader can see how I modelled the behavior of specific functions.

��6SHFLDO�GHILQLWLRQV�XVHG�E\�WKH�6(0,�DQDO\]HU�
���7KHVH�GHILQLWLRQV�DUH�XVHG�E\�WKH�6(0,�DQDO\]HU�DQG�E\�
RWKHU�QDWLYH�FRGH�VSHFLILFDWLRQV�
���7KHVH�PD\�QRW�KDYH�FRQVWUDLQWV�JHQHUDWHG�IRU�WKHP�
XVLQJ�WKH�QRUPDO�SDWK��JXLGHG�E\�WKH�OLYHQHVV�TXHU\���
6(0,�PD\�MXVW�GHFLGH�WR�JHQHUDWH�LWV�RZQ�FRQVWUDLQWV�IRU�
WKHP�DV�QHHGHG��:H�GR�WKLV�VR�WKDW�WKH�GHWDLOV�RI�KRZ�
WKH\�DUH�XVHG�DUH�NHSW�LQWHUQDO�WR�6(0,�
�

PDNH&KDU$UUD\���^
����9$/8(� �QHZ�>&�
����MDYD�ODQJ�2EMHFW��LQLW!�9$/8(��
����/(1� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

/���&+� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �&+�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�9$/8(�
`

DFFHVV6WULQJ&KDUV�675��^
����675�MDYD�ODQJ�6WULQJ�YDOXH�
����675�MDYD�ODQJ�6WULQJ�RIIVHW�
����675�MDYD�ODQJ�6WULQJ�FRXQW�
`

PDNH,QW$UUD\���^
����9$/8(� �QHZ�>,�
����MDYD�ODQJ�2EMHFW��LQLW!�9$/8(��
����/(1� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

/���,� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �,�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�9$/8(�
`

PDNH%\WH$UUD\���^
����9$/8(� �QHZ�>%�
����MDYD�ODQJ�2EMHFW��LQLW!�9$/8(��
����/(1� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

/���%� �FKRRVH�
����9$/8(�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �%�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�9$/8(�
`

PDNH6WULQJ���^
����9$/8(� �PDNH&KDU$UUD\���
����675� �QHZ�MDYD�ODQJ�6WULQJ�
����MDYD�ODQJ�6WULQJ��LQLW!�675��9$/8(����>&�9��
����UHWXUQ� �FKRRVH�675�
`

PXQJH6WULQJV�675���675���^
����9$/8(� �PDNH&KDU$UUD\���
����JRWR�/���/���1�
����
/���&+$56� �675��MDYD�ODQJ�6WULQJ�YDOXH�
����JRWR�5�
����
/���&+$56� �675��MDYD�ODQJ�6WULQJ�YDOXH�
����
5���&+� �&+$56�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�

����9$/8(�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �&+�
����JRWR�/���/���1�
����
1���675� �QHZ�MDYD�ODQJ�6WULQJ�
����MDYD�ODQJ�6WULQJ��LQLW!�675��9$/8(����>&�9��
����UHWXUQ� �FKRRVH�675��675���675��
`

LQLW6WULQJFRQVW���^
����675� �PDNH6WULQJ���
����MDYD�ODQJ�6WULQJ�LQWHUQVWU�� �675�
`

��([FHSWLRQ�IXQFWLRQV��

��BVWULQJFRQVW�LV�LQYRNHG�WR�JHQHUDWH�D�6WULQJ�FRQVWDQW�
XVHG�E\�RQH�RI�WKH�OGF�LQVWUXFWLRQV�
���,W
V�DOVR�XVHG�LQ�QDWLYH�FRGH�VSHFLILFDWLRQV���
BVWULQJFRQVW���^
����UHWXUQ� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
`

��BPDJLFH[Q�LV�LQYRNHG�DW�WKH�VWDUW�RI�D�FDWFK�EORFN�WR�
JHQHUDWH�DOO�WKH�H[FHSWLRQV�WKDW�FRXOG�EH�FDXJKW�WKHUH��
�
BPDJLFH[Q���^
����JRWR�/���/���/���/���/���/���/���/���/���/���/����
/����/����/����/����/����/����/����/����/����/����/����
/����/����/���
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�9LUWXDO0DFKLQH(UURU�
����MDYD�ODQJ�9LUWXDO0DFKLQH(UURU��LQLW!�(;1��
����MDYD�ODQJ�9LUWXDO0DFKLQH(UURU��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�/LQNDJH(UURU�
����MDYD�ODQJ�/LQNDJH(UURU��LQLW!�(;1��
����MDYD�ODQJ�/LQNDJH(UURU��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1XOO3RLQWHU([FHSWLRQ�
����MDYD�ODQJ�1XOO3RLQWHU([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�1XOO3RLQWHU([FHSWLRQ��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�$UUD\,QGH[2XW2I%RXQGV([FHSWLRQ�
����,17� �FKRRVH�����QRW�OLQNHG�WR�WKH�DFWXDO�DUUD\
���������������������LQGH[�XVHG
����MDYD�ODQJ�$UUD\,QGH[2XW2I%RXQGV([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�$UUD\,QGH[2XW2I%RXQGV([FHSWLRQ��LQLW!�(;1��
,17����,�9��
����MDYD�ODQJ�$UUD\,QGH[2XW2I%RXQGV([FHSWLRQ��LQLW!�(;1��
675����/MDYD�ODQJ�6WULQJ��9��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�$UUD\6WRUH([FHSWLRQ�
����MDYD�ODQJ�$UUD\6WRUH([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�$UUD\6WRUH([FHSWLRQ��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�$ULWKPHWLF([FHSWLRQ�
����MDYD�ODQJ�$ULWKPHWLF([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�$ULWKPHWLF([FHSWLRQ��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���

276

����(;1� �QHZ�MDYD�ODQJ�1HJDWLYH$UUD\6L]H([FHSWLRQ�
����MDYD�ODQJ�1HJDWLYH$UUD\6L]H([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�1HJDWLYH$UUD\6L]H([FHSWLRQ��LQLW!�(;1��
675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�&ODVV&DVW([FHSWLRQ�
����MDYD�ODQJ�&ODVV&DVW([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�&ODVV&DVW([FHSWLRQ��LQLW!�(;1��675��
����JRWR�/�
/��
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ�
����MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ��LQLW!�(;1��
675��
����JRWR�/�
/��
����(;1� �QHZ�MDYD�ODQJ�7KUHDG'HDWK�
����MDYD�ODQJ�7KUHDG'HDWK��LQLW!�(;1��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,QWHUQDO(UURU�
����MDYD�ODQJ�,QWHUQDO(UURU��LQLW!�(;1��
����MDYD�ODQJ�,QWHUQDO(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�2XW2I0HPRU\(UURU�
����MDYD�ODQJ�2XW2I0HPRU\(UURU��LQLW!�(;1��
����MDYD�ODQJ�2XW2I0HPRU\(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�6WDFN2YHUIORZ(UURU�
����MDYD�ODQJ�6WDFN2YHUIORZ(UURU��LQLW!�(;1��
����MDYD�ODQJ�6WDFN2YHUIORZ(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�8QNQRZQ(UURU�
����MDYD�ODQJ�8QNQRZQ(UURU��LQLW!�(;1��
����MDYD�ODQJ�8QNQRZQ(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�$EVWUDFW0HWKRG(UURU�
����MDYD�ODQJ�$EVWUDFW0HWKRG(UURU��LQLW!�(;1��
����MDYD�ODQJ�$EVWUDFW0HWKRG(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�&ODVV&LUFXODULW\(UURU�
����MDYD�ODQJ�&ODVV&LUFXODULW\(UURU��LQLW!�(;1��
����MDYD�ODQJ�&ODVV&LUFXODULW\(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�&ODVV)RUPDW(UURU�
����MDYD�ODQJ�&ODVV)RUPDW(UURU��LQLW!�(;1��
����MDYD�ODQJ�&ODVV)RUPDW(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO$FFHVV(UURU�
����MDYD�ODQJ�,OOHJDO$FFHVV(UURU��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO$FFHVV(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,QFRPSDWLEOH&ODVV&KDQJH(UURU�
����MDYD�ODQJ�,QFRPSDWLEOH&ODVV&KDQJH(UURU��LQLW!�(;1��
����MDYD�ODQJ�,QFRPSDWLEOH&ODVV&KDQJH(UURU��LQLW!�(;1��
675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,QVWDQWLDWLRQ(UURU�
����MDYD�ODQJ�,QVWDQWLDWLRQ(UURU��LQLW!�(;1��
����MDYD�ODQJ�,QVWDQWLDWLRQ(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1R&ODVV'HI)RXQG(UURU�
����MDYD�ODQJ�1R&ODVV'HI)RXQG(UURU��LQLW!�(;1��
����MDYD�ODQJ�1R&ODVV'HI)RXQG(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1R6XFK)LHOG(UURU�

����MDYD�ODQJ�1R6XFK)LHOG(UURU��LQLW!�(;1��
����MDYD�ODQJ�1R6XFK)LHOG(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1R6XFK0HWKRG(UURU�
����MDYD�ODQJ�1R6XFK0HWKRG(UURU��LQLW!�(;1��
����MDYD�ODQJ�1R6XFK0HWKRG(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�8QVDWLVILHG/LQN(UURU�
����MDYD�ODQJ�8QVDWLVILHG/LQN(UURU��LQLW!�(;1��
����MDYD�ODQJ�8QVDWLVILHG/LQN(UURU��LQLW!�(;1��675��
����JRWR�/�
/���
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�9HULI\(UURU�
����MDYD�ODQJ�9HULI\(UURU��LQLW!�(;1��
����MDYD�ODQJ�9HULI\(UURU��LQLW!�(;1��675��
����JRWR�/�
/���UHWXUQ� �FKRRVH�(;1�
`

��BZUDSFODVVLQLWLDOL]HUH[Q�LV�LQYRNHG�ZKHQ�D�FODVV�
LQLWLDOL]HU�PHWKRG��FOLQLW!�LV
���FDOOHG��$Q\�H[FHSWLRQ�WKURZQ�E\��FOLQLW!�LV�SDVVHG�
WKURXJK�KHUH�WR�VLPXODWH�WKH
���IDFW�WKDW�WKH�90�WUDQVODWHV�LW�WR�DQ�
([FHSWLRQ,Q,QLWLDOL]HU(UURU���
BZUDSFODVVLQLWLDOL]HUH[Q�5($/(;1��^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�([FHSWLRQ,Q,QLWLDOL]HU(UURU�
����MDYD�ODQJ�([FHSWLRQ,Q,QLWLDOL]HU(UURU��LQLW!�(;1��
����MDYD�ODQJ�([FHSWLRQ,Q,QLWLDOL]HU(UURU��LQLW!�(;1��
5($/(;1����/MDYD�ODQJ�7KURZDEOH��9��
����MDYD�ODQJ�([FHSWLRQ,Q,QLWLDOL]HU(UURU��LQLW!�(;1��
675����/MDYD�ODQJ�6WULQJ��9��
����UHWXUQ� �FKRRVH�(;1�
`

PDNH,2([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�LR�,2([FHSWLRQ�
����MDYD�LR�,2([FHSWLRQ��LQLW!�(;1��
����MDYD�LR�,2([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

��MDYD�LR�2EMHFW,QSXW6WUHDP��

MDYD�LR�2EMHFW,QSXW6WUHDP�ORDG&ODVV��&��1$0(��^
����UHWXUQ� �MDYD�ODQJ�&ODVV�IRU1DPH�1$0(��
`

PDNH,QYDOLG&ODVV([FHSWLRQ�&/$66��^
����675� �BVWULQJFRQVW���
����&1$0(� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�LR�,QYDOLG&ODVV([FHSWLRQ�
����MDYD�LR�,QYDOLG&ODVV([FHSWLRQ��LQLW!�(;1��&1$0(��
����MDYD�LR�,QYDOLG&ODVV([FHSWLRQ��LQLW!�(;1��&1$0(��
675��
����UHWXUQ� �FKRRVH�(;1�
`

PDNH6WUHDP&RUUXSWHG([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�LR�6WUHDP&RUUXSWHG([FHSWLRQ�
����MDYD�LR�6WUHDP&RUUXSWHG([FHSWLRQ��LQLW!�(;1��
����MDYD�LR�6WUHDP&RUUXSWHG([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�LR�2EMHFW,QSXW6WUHDP�LQSXW&ODVV)LHOGV�7+,6��2%-��
&/$66��),(/'6��^
����),(/'� �),(/'6�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�
����
����JRWR�%��6��&��,��-��=��)��'��/�
����
%���%<7(� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG%\WH�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��%<7(�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG%<7(�2%-��
&/$66��%<7(��
����JRWR�'21(�
�
6���6+257� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG6KRUW�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��6+257�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG6+257�2%-��
&/$66��6+257��
����JRWR�'21(�
�
&���&+$5� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG&KDU�7+,6��

277

����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��&+$5�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG&+$5�2%-��
&/$66��&+$5��
����JRWR�'21(�
�
,���,17� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG,QW�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,17�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG,17�2%-��
&/$66��,17��
����JRWR�'21(�

-���/21*� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG/RQJ�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��/21*�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG/21*�2%-��
&/$66��/21*��
����JRWR�'21(�

=���%22/� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG%RROHDQ�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��%22/�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG%22/�2%-��
&/$66��%22/��
����JRWR�'21(�

)���)/2$7� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG)ORDW�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��)/2$7�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG)/2$7�2%-��
&/$66��)/2$7��
����JRWR�'21(�

'���'28%/(� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG'RXEOH�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��'28%/(�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG'28%/(�2%-��
&/$66��'28%/(��
����JRWR�'21(�

/���2%-(&7� �MDYD�LR�2EMHFW,QSXW6WUHDP�UHDG2EMHFW�7+,6��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��2%-(&7�
����5HIOHFWLRQ+DQGOHUBDVVLJQ6HULDOL]HG)LHOG2%-(&7�2%-��
&/$66��2%-(&7��
�
'21(�
����(;1�� �PDNH&ODVV1RW)RXQG([FHSWLRQ���
����(;1�� �PDNH,QYDOLG&ODVV([FHSWLRQ�&/$66��
����(;1�� �PDNH6WUHDP&RUUXSWHG([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1���(;1���(;1��
`

MDYD�LR�2EMHFW,QSXW6WUHDP�DOORFDWH1HZ2EMHFW�$&/$66��
,1,7&/$66��^
����2%-� �5HIOHFWLRQ+DQGOHUBPDNH6HULDOL]HG2EMHFW�$&/$66��
����(;1�� �PDNH,QVWDQWLDWLRQ([FHSWLRQ���
����(;1�� �PDNH,OOHJDO$FFHVV([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����UHWXUQ� �FKRRVH�2%-�
`

MDYD�LR�2EMHFW,QSXW6WUHDP�DOORFDWH1HZ$UUD\�$55$<&/$66��
/(1*7+��^
����2%-� �
5HIOHFWLRQ+DQGOHUBPDNH6HULDOL]HG$UUD\�$55$<&/$66��
����UHWXUQ� �FKRRVH�2%-�
`

MDYD�LR�2EMHFW,QSXW6WUHDP�LQYRNH2EMHFW5HDGHU�7+,6��2%-��
&/$66��^
����,2� �5HIOHFWLRQ+DQGOHUBLQYRNHBUHDG2EMHFW�2%-��&/$66��
7+,6��
����
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����(;1�� �PDNH&ODVV1RW)RXQG([FHSWLRQ���
����(;1�� �PDNH,QYDOLG&ODVV([FHSWLRQ�&/$66��
����(;1�� �PDNH6WUHDP&RUUXSWHG([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1���(;1���(;1��
`

��MDYD�LR�2EMHFW2XWSXW6WUHDP��

MDYD�LR�2EMHFW2XWSXW6WUHDP�RXWSXW&ODVV)LHOGV�7+,6��2%-��
&/$66��),(/'6��^
����),(/'� �),(/'6�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�

����JRWR�%��6��&��,��-��=��)��'��/�
����
%���%<7(� �5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG%<7(�2%-��
&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH%\WH�7+,6��
%<7(��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�
�
6���6+257� �
5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG6+257�2%-��&/$66��

����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH6KRUW�7+,6��
6+257��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�
�
&���&+$5� �5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG&+$5�2%-��
&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH&KDU�7+,6��
&+$5��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�

,���,17� �5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG,17�2%-��
&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH,QW�7+,6��,17��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�
�
-���/21*� �5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG/21*�2%-��
&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH/RQJ�7+,6��
/21*��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�

=���%22/� �5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG%22/�2%-��
&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH%RROHDQ�7+,6��
%22/��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�

)���)/2$7� �
5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG)/2$7�2%-��&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH)ORDW�7+,6��
)/2$7��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�

'���'28%/(� �
5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG'28%/(�2%-��&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH'RXEOH�7+,6��
'28%/(��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
����JRWR�'21(�

/���2%-(&7� �
5HIOHFWLRQ+DQGOHUBJHW6HULDOL]HG)LHOG2%-(&7�2%-��&/$66��
����,2� �MDYD�LR�2EMHFW2XWSXW6WUHDP�ZULWH2EMHFW�7+,6��
2%-(&7��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
�
'21(�
����(;1�� �PDNH,QYDOLG&ODVV([FHSWLRQ�&/$66��
����WKURZ� �FKRRVH�(;1���(;1��
`

MDYD�LR�2EMHFW2XWSXW6WUHDP�LQYRNH2EMHFW:ULWHU�7+,6��2%-��
&/$66��^
����,2� �5HIOHFWLRQ+DQGOHUBLQYRNHBZULWH2EMHFW�2%-��&/$66��
7+,6��
����
����WKURZ� �FDWFK��MDYD�ODQJ�7KURZDEOH��,2�
`

��MDYD�LR�2EMHFW6WUHDP&ODVV��

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW&ODVV$FFHVV�&��^
����UHWXUQ� �MDYD�ODQJ�&ODVV�JHW0RGLILHUV�&��
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW0HWKRG6LJQDWXUHV�&��^
����UHWXUQ� �PDNH&RQVW6WULQJ$UUD\���
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW0HWKRG$FFHVV�&��6,*��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW)LHOG6LJQDWXUHV�&��^
����UHWXUQ� �PDNH&RQVW6WULQJ$UUD\���
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW)LHOG$FFHVV�&��6,*��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW)LHOGV��&��^
����/,67� �QHZ�>/MDYD�LR�2EMHFW6WUHDP)LHOG�
����MDYD�ODQJ�2EMHFW��LQLW!�/,67��
����/(1� �FKRRVH�
����/,67�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

278

/���9$/8(� �QHZ�MDYD�LR�2EMHFW6WUHDP)LHOG�
����1$0(� �BVWULQJFRQVW���
����7� �FKRRVH�
����2� �FKRRVH�
����76� �BVWULQJFRQVW���
����MDYD�LR�2EMHFW6WUHDP)LHOG��LQLW!�9$/8(��1$0(��7��2��
76��
����/,67�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �9$/8(�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�/,67�
`

MDYD�LR�2EMHFW6WUHDP&ODVV�JHW6HULDO9HUVLRQ8,'�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�2EMHFW6WUHDP&ODVV�KDV:ULWH2EMHFW�&��^
����UHWXUQ� �FKRRVH�
`

��MDYD�LR�)LOH'HVFULSWRU��

MDYD�LR�)LOH'HVFULSWRU�LQLW6\VWHP)'�)'��'(6&��^
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �'(6&�
����UHWXUQ� �FKRRVH�)'�
`

MDYD�LR�)LOH'HVFULSWRU�YDOLG���^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH'HVFULSWRU�V\QF���^
����(;1� �QHZ�MDYD�LR�6\QF)DLOHG([FHSWLRQ�
����675� �BVWULQJFRQVW���
����MDYD�LR�6\QF)DLOHG([FHSWLRQ��LQLW!�(;1��675��
����WKURZ� �FKRRVH�(;1�
`

��MDYD�LR�)LOH,QSXW6WUHDP��

MDYD�LR�)LOH,QSXW6WUHDP�RSHQ�7+,6��1$0(��^
����)'� �7+,6�MDYD�LR�)LOH,QSXW6WUHDP�IG�
����1(:)'� �FKRRVH�
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:)'�
����WKURZ� �PDNH,2([FHSWLRQ���
`

PDNH,QWHUUXSWHG,2([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�LR�,QWHUUXSWHG,2([FHSWLRQ�
����MDYD�LR�,QWHUUXSWHG,2([FHSWLRQ��LQLW!�(;1��
����MDYD�LR�,QWHUUXSWHG,2([FHSWLRQ��LQLW!�(;1��675��
����180� �FKRRVH�
����(;1�MDYD�LR�,QWHUUXSWHG,2([FHSWLRQ�E\WHV7UDQVIHUUHG�
� �180�
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�LR�)LOH,QSXW6WUHDP�UHDG�7+,6��^
����UHWXUQ� �FKRRVH�
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH,QSXW6WUHDP�UHDG%\WHV�7+,6��%��2))��/(1��^
����UHWXUQ� �FKRRVH�/(1�
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH,QSXW6WUHDP�VNLS�7+,6��1��^
����UHWXUQ� �FKRRVH�1�
����WKURZ� �PDNH,2([FHSWLRQ���
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH,QSXW6WUHDP�DYDLODEOH�7+,6��^
����UHWXUQ� �FKRRVH�
����WKURZ� �PDNH,2([FHSWLRQ���
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH,QSXW6WUHDP�FORVH�7+,6��^
����WKURZ� �PDNH,2([FHSWLRQ���
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

��MDYD�LR�)LOH2XWSXW6WUHDP��

MDYD�LR�)LOH2XWSXW6WUHDP�RSHQ�7+,6��1$0(��^
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����1(:)'� �FKRRVH�
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:)'�
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�)LOH2XWSXW6WUHDP�RSHQ$SSHQG�7+,6��1$0(��^
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����1(:)'� �FKRRVH�
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:)'�
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�)LOH2XWSXW6WUHDP�ZULWH�7+,6��%��^
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH2XWSXW6WUHDP�ZULWH%\WHV�7+,6��%��2))��/(1��^
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

MDYD�LR�)LOH2XWSXW6WUHDP�FORVH�7+,6��^
����WKURZ� �PDNH,2([FHSWLRQ���
����)'� �7+,6�MDYD�LR�)LOH2XWSXW6WUHDP�IG�
����26)'� �)'�MDYD�LR�)LOH'HVFULSWRU�IG�
`

��MDYD�LR�)LOH��

MDYD�LR�)LOH�ODVW0RGLILHG��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�OHQJWK��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�H[LVWV��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�FDQ:ULWH��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�FDQ5HDG��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�LV)LOH��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�LV'LUHFWRU\��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�PNGLU��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�GHOHWH��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�UPGLU��7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�LR�)LOH�UHQDPH7R��7+,6��'(67��^
����3$7+� �'(67�MDYD�LR�)LOH�SDWK�
����7+,6�MDYD�LR�)LOH�SDWK�� �3$7+�
����UHWXUQ� �FKRRVH�
`

279

PDNH'\QDPLF6WULQJ$UUD\���^
����/,67� �QHZ�>/MDYD�ODQJ�6WULQJ�
����MDYD�ODQJ�2EMHFW��LQLW!�/,67��
����/(1� �FKRRVH�
����/,67�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

/���675� �PDNH6WULQJ���
����/,67�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �675�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�/,67�
`

PDNH&RQVW6WULQJ$UUD\���^
����/,67� �QHZ�>/MDYD�ODQJ�6WULQJ�
����MDYD�ODQJ�2EMHFW��LQLW!�/,67��
����/(1� �FKRRVH�
����/,67�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�

/���675� �BVWULQJFRQVW���
����/,67�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �675�
����JRWR�/��1�
����
1���UHWXUQ� �FKRRVH�/,67�
`

MDYD�LR�)LOH�OLVW��7+,6��^
����UHWXUQ� �PDNH'\QDPLF6WULQJ$UUD\���
`

MDYD�LR�)LOH�FDQRQ3DWK�7+,6��^
����&853$7+� �7+,6�MDYD�LR�)LOH�SDWK�
����675� �PDNH6WULQJ���
����UHWXUQ� �PXQJH6WULQJV�&853$7+��675��
`

MDYD�LR�)LOH�LV$EVROXWH�7+,6��^
����UHWXUQ� �FKRRVH�
`

��MDYD�LR�5DQGRP$FFHVV)LOH��

MDYD�LR�5DQGRP$FFHVV)LOH�RSHQ�7+,6��1$0(��:5,7($%/(��^
����)'� �7+,6�MDYD�LR�5DQGRP$FFHVV)LOH�IG�
����1(:)'� �FKRRVH�
����)'�MDYD�LR�)LOH'HVFULSWRU�IG�� �1(:)'�
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�5DQGRP$FFHVV)LOH�UHDG�7+,6��^
����UHWXUQ� �FKRRVH�
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
`

MDYD�LR�5DQGRP$FFHVV)LOH�UHDG%\WHV�7+,6��%��2))��/(1��^
����UHWXUQ� �FKRRVH�/(1�
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
`

MDYD�LR�5DQGRP$FFHVV)LOH�ZULWH�7+,6��%��^
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
`

MDYD�LR�5DQGRP$FFHVV)LOH�ZULWH%\WHV�7+,6��%��2))��/(1��^
����(;1�� �PDNH,2([FHSWLRQ���
����(;1�� �PDNH,QWHUUXSWHG,2([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
`

MDYD�LR�5DQGRP$FFHVV)LOH�JHW)LOH3RLQWHU�7+,6��^
����UHWXUQ� �FKRRVH�
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�5DQGRP$FFHVV)LOH�VHHN�7+,6��326��^
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�5DQGRP$FFHVV)LOH�OHQJWK�7+,6��^
����UHWXUQ� �FKRRVH�
����WKURZ� �PDNH,2([FHSWLRQ���
`

MDYD�LR�5DQGRP$FFHVV)LOH�FORVH�7+,6��^
����WKURZ� �PDNH,2([FHSWLRQ���
`

��MDYD�ODQJ�2EMHFW��

MDYD�ODQJ�2EMHFW�KDVK&RGH�7+,6��^
����+$6+� �7+,6�MDYD�ODQJ�2EMHFW�LGHQWLW\�
����UHWXUQ� �FKRRVH�+$6+�
`

MDYD�ODQJ�2EMHFW�JHW&ODVV�7+,6��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�2EMHFW�FORQH�7+,6��^
����675� �BVWULQJFRQVW���
����(;1�� �QHZ�MDYD�ODQJ�&ORQH1RW6XSSRUWHG([FHSWLRQ�
����MDYD�ODQJ�&ORQH1RW6XSSRUWHG([FHSWLRQ��LQLW!�(;1���
����MDYD�ODQJ�&ORQH1RW6XSSRUWHG([FHSWLRQ��LQLW!�(;1���
675��
����WKURZ� �FKRRVH�(;1��
����UHWXUQ� �FKRRVH�7+,6�
`

PDNH,OOHJDO0RQLWRU6WDWH([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ�
����MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO0RQLWRU6WDWH([FHSWLRQ��LQLW!�(;1��
675��
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�ODQJ�2EMHFW�QRWLI\�7+,6��^
����WKURZ� �PDNH,OOHJDO0RQLWRU6WDWH([FHSWLRQ���
`

MDYD�ODQJ�2EMHFW�QRWLI\$OO�7+,6��^
����WKURZ� �PDNH,OOHJDO0RQLWRU6WDWH([FHSWLRQ���
`

MDYD�ODQJ�2EMHFW�ZDLW�7+,6��7,0(287��^
����WKURZ� �PDNH,OOHJDO0RQLWRU6WDWH([FHSWLRQ���
`

MDYD�ODQJ�2EMHFW�ZDLW�7+,6��7,0(287��^
����(;1�� �PDNH,OOHJDO0RQLWRU6WDWH([FHSWLRQ���
����675� �BVWULQJFRQVW���
����(;1�� �QHZ�MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ�
����MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ��LQLW!�(;1���
����MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ��LQLW!�(;1���675��
����675� �BVWULQJFRQVW���
����(;1�� �QHZ�MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ�
����MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ��LQLW!�(;1���
����MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ��LQLW!�(;1���675��
����WKURZ� �FKRRVH�(;1���(;1���(;1��
`

��MDYD�ODQJ�0DWK��

MDYD�ODQJ�0DWK�VLQ�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�FRV�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�WDQ�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�DVLQ�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�DFRV�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�DWDQ�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�H[S�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�ORJ�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�VTUW�$��^
����UHWXUQ� �FKRRVH�

280

`

MDYD�ODQJ�0DWK�,(((5HPDLQGHU�)���)���^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�FHLO�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�IORRU�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�ULQW�$��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�DWDQ��$��%��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�0DWK�SRZ�$��%��^
����UHWXUQ� �FKRRVH�
`

��MDYD�ODQJ�)ORDW��

MDYD�ODQJ�)ORDW�IORDW7R,QW%LWV�)/2$7��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�)ORDW�LQW%LWV7R)ORDW�%,76��^
����UHWXUQ� �FKRRVH�
`

��MDYD�ODQJ�'RXEOH��

MDYD�ODQJ�'RXEOH�GRXEOH7R/RQJ%LWV�'28%/(��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�'RXEOH�ORQJ%LWV7R'RXEOH�%,76��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�'RXEOH�YDOXH2I��6��^
����(;1� �QHZ�MDYD�ODQJ�1XPEHU)RUPDW([FHSWLRQ�
����675� �BVWULQJFRQVW���
����MDYD�ODQJ�1XPEHU)RUPDW([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�1XPEHU)RUPDW([FHSWLRQ��LQLW!�(;1��675��
����WKURZ� �FKRRVH�(;1�
����UHWXUQ� �FKRRVH�
`

��MDYD�ODQJ�7KURZDEOH��

MDYD�ODQJ�7KURZDEOH�ILOO,Q6WDFN7UDFH�7+,6��^
����75$&(� �FKRRVH�
����7+,6�MDYD�ODQJ�7KURZDEOH�EDFNWUDFH�� �75$&(�
����UHWXUQ� �FKRRVH�7+,6�
`

��7KLV�GRHVQ
W�UHDOO\�ZRUN��7KH�SULQW6WDFN7UDFH��
GRFXPHQWDWLRQ�VD\V�WKDW�WKH�675($0�VKRXOG�KDYH�D�
SULQWOQ�FKDU>@��PHWKRG��EXW�ZH�GRQ
W�NQRZ�ZKDW�FODVV�LW
V�
LQ��VR�KRZ�FDQ�ZH�FDOO�LW"�:H�SUREDEO\�QHHG�ORWV�RI�H[WUD�
XJO\�VXSSRUW�WR�JHW�WKLV�UHDOO\�ULJKW��)RU�QRZ�ZH�MXVW�
LJQRUH�WKH�675($0���
MDYD�ODQJ�7KURZDEOH�SULQW6WDFN7UDFH��7+,6��675($0��^
`

��MDYD�ODQJ�7KUHDG��

MDYD�ODQJ�7KUHDG�FXUUHQW7KUHDG���^
����7� �MDYD�ODQJ�7KUHDG�FXUUHQWWKUHDG�
����UHWXUQ� �FKRRVH�7�
`

MDYD�ODQJ�7KUHDG�\LHOG���^
`

MDYD�ODQJ�7KUHDG�VOHHS�0,//,6��^
����(;1� �QHZ�MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ�
����675� �BVWULQJFRQVW���
����MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,QWHUUXSWHG([FHSWLRQ��LQLW!�(;1��675��
����WKURZ� �FKRRVH�(;1�
`

MDYD�ODQJ�7KUHDG�VWDUW�7+,6��^
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO7KUHDG6WDWH([FHSWLRQ�

����675� �BVWULQJFRQVW���
����MDYD�ODQJ�,OOHJDO7KUHDG6WDWH([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO7KUHDG6WDWH([FHSWLRQ��LQLW!�(;1��
675��
����WKURZ� �FKRRVH�(;1�
����MDYD�ODQJ�7KUHDG�UXQ�7+,6��
`

���QRW�VXUH�ZKDW�WKLV�GRHV
MDYD�ODQJ�7KUHDG�LV,QWHUUXSWHG�7+,6��&/($5��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�7KUHDG�LV$OLYH�7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�7KUHDG�FRXQW6WDFN)UDPHV�7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�7KUHDG�VHW3ULRULW\��7+,6��35,25,7<��^
`

MDYD�ODQJ�7KUHDG�VWRS��7+,6��^
`

MDYD�ODQJ�7KUHDG�VXVSHQG��7+,6��^
`

MDYD�ODQJ�7KUHDG�UHVXPH��7+,6��^
`

MDYD�ODQJ�7KUHDG�LQWHUUXSW��7+,6��^
`

��MDYD�ODQJ�&RPSLOHU��

MDYD�ODQJ�&RPSLOHU�LQLWLDOL]H���^
`

MDYD�ODQJ�&RPSLOHU�FRPSLOH&ODVV�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&RPSLOHU�FRPSLOH&ODVVHV�&6��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&RPSLOHU�FRPPPDQG�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&RPSLOHU�HQDEOH���^
`

MDYD�ODQJ�&RPSLOHU�GLVDEOH���^
`

��MDYD�ODQJ�:LQ��3URFHVV��

MDYD�ODQJ�:LQ��3URFHVV�H[LW9DOXH���^
����UHVXOW� �FKRRVH�
`

MDYD�ODQJ�:LQ��3URFHVV�ZDLW)RU���^
����UHVXOW� �FKRRVH�
`

MDYD�ODQJ�:LQ��3URFHVV�GHVWUR\���^
`

MDYD�ODQJ�:LQ��3URFHVV�FUHDWH�&0'��(19��^
����DFFHVV6WULQJ&KDUV�&0'��
����DFFHVV6WULQJ&KDUV�(19��
`

MDYD�ODQJ�:LQ��3URFHVV�FORVH���^
`

��MDYD�ODQJ�5XQWLPH��

MDYD�ODQJ�5XQWLPH�H[LW,QWHUQDO�7+,6��67$786��^
`

MDYD�ODQJ�5XQWLPH�UXQ)LQDOL]HUV2Q([LW��7+,6��9$/8(��^
`

MDYD�ODQJ�5XQWLPH�H[HF,QWHUQDO�7+,6��&0'55<��(193��^
����352&(66� �QHZ�MDYD�ODQJ�:LQ��3URFHVV�
����MDYD�ODQJ�:LQ��3URFHVV��LQLW!�352&(66��&0'55<��
(193��

281

����UHWXUQ� �FKRRVH�352&(66�
`

MDYD�ODQJ�5XQWLPH�IUHH0HPRU\�7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�5XQWLPH�WRWDO0HPRU\�7+,6��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�5XQWLPH�JF�7+,6��^
`

MDYD�ODQJ�5XQWLPH�UXQ)LQDOL]DWLRQ�7+,6��^
`

MDYD�ODQJ�5XQWLPH�WUDFH,QVWUXFWLRQV�7+,6��21��^
`

MDYD�ODQJ�5XQWLPH�WUDFH0HWKRG&DOOV�7+,6��21��^
`

MDYD�ODQJ�5XQWLPH�LQLWLDOL]H/LQNHU,QWHUQDO�7+,6��^
����UHWXUQ� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
`

MDYD�ODQJ�5XQWLPH�EXLOG/LE1DPH�7+,6��3$7+1$0(��),/(1$0(��
^
����%8)� �QHZ�MDYD�ODQJ�6WULQJ%XIIHU�
����MDYD�ODQJ�6WULQJ%XIIHU��LQLW!�%8)��3$7+1$0(��
��/MDYD�ODQJ�6WULQJ��9��
����675� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
����MDYD�ODQJ�6WULQJ%XIIHU�DSSHQG�%8)��675��
��/MDYD�ODQJ�6WULQJ��/MDYD�ODQJ�6WULQJ%XIIHU���
����MDYD�ODQJ�6WULQJ%XIIHU�DSSHQG�%8)��),/(1$0(��
��/MDYD�ODQJ�6WULQJ��/MDYD�ODQJ�6WULQJ%XIIHU���
����675� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
����MDYD�ODQJ�6WULQJ%XIIHU�DSSHQG�%8)��675��
��/MDYD�ODQJ�6WULQJ��/MDYD�ODQJ�6WULQJ%XIIHU���
����UHWXUQ� �MDYD�ODQJ�6WULQJ%XIIHU�WR6WULQJ�%8)��
`

MDYD�ODQJ�5XQWLPH�ORDG)LOH,QWHUQDO�7+,6��),/(1$0(��^
����UHWXUQ� �FKRRVH�
`

��MDYD�ODQJ�6WULQJ��
MDYD�ODQJ�6WULQJ�LQWHUQ�7+,6��^
����JRWR�<��1�
����
<���MDYD�ODQJ�6WULQJ�LQWHUQVWU�� �7+,6�

1���UHWXUQ� �MDYD�ODQJ�6WULQJ�LQWHUQVWU�
`

��MDYD�ODQJ�6\VWHP��

MDYD�ODQJ�6\VWHP�FXUUHQW7LPH0LOOLV���^
�������WKLV�MXVW�UHWXUQV�DQ�DUELWUDU\�IUHVK�YDOXH
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�6\VWHP�LGHQWLW\+DVK&RGH�2%-��^
����+$6+� �2%-�MDYD�ODQJ�2EMHFW�LGHQWLW\�
����UHWXUQ� �FKRRVH�+$6+�
`

���7KLV�RQH�PLJKW�QHHG�WR�EH�FKDQJHG��,Q�SDUWLFXODU��LW�
PLJKW�FDOO
���3URSHUWLHV�UHDG
MDYD�ODQJ�6\VWHP�LQLW3URSHUWLHV�35236��^
����3523� �PDNH6WULQJ���
����675� �PDNH6WULQJ���
����MDYD�XWLO�+DVKWDEOH�SXW�35236��3523��675��
����UHWXUQ� �FKRRVH�35236�
`

MDYD�ODQJ�6\VWHP�VHW,Q��,1��^
����MDYD�ODQJ�6\VWHP�LQ�� �,1�
`

MDYD�ODQJ�6\VWHP�VHW2XW��287��^
����MDYD�ODQJ�6\VWHP�RXW�� �287�
`

MDYD�ODQJ�6\VWHP�VHW(UU��(55��^
����MDYD�ODQJ�6\VWHP�HUU�� �(55�
`

MDYD�ODQJ�6\VWHP�VHW,Q��,1��^
����MDYD�ODQJ�6\VWHP�LQ�� �,1�

`

MDYD�ODQJ�6\VWHP�DUUD\FRS\�)520��)5202))��72��722))��/(1��
^
����9$/� �)520�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�
����72�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �9$/�
����9$/� �)520�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�
����72�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �9$/�
����9$/� �)520�MDYD�ODQJ�2EMHFW�IORDWDUUD\HOHPHQW�
����72�MDYD�ODQJ�2EMHFW�IORDWDUUD\HOHPHQW�� �9$/�
����9$/� �)520�MDYD�ODQJ�2EMHFW�ORQJDUUD\HOHPHQW�
����72�MDYD�ODQJ�2EMHFW�ORQJDUUD\HOHPHQW�� �9$/�
����9$/� �)520�MDYD�ODQJ�2EMHFW�GRXEOHDUUD\HOHPHQW�
����72�MDYD�ODQJ�2EMHFW�GRXEOHDUUD\HOHPHQW�� �9$/�
`

��MDYD�ODQJ�&ODVV��

PDNH&ODVV���^
����&/$66� �QHZ�MDYD�ODQJ�&ODVV�
����MDYD�ODQJ�&ODVV��LQLW!�&/$66��
����MDYD�ODQJ�&ODVV�LQWHUQFODVV�� �&/$66�
����UHWXUQ� �MDYD�ODQJ�&ODVV�LQWHUQFODVV�
`

PDNH6LJQHU���^
����UHWXUQ� �MDYD�ODQJ�&ODVV�LQWHUQVLJQHU�
`

PDNH&ODVV$UUD\���^
����&6� �QHZ�>/MDYD�ODQJ�&ODVV�
����MDYD�ODQJ�2EMHFW��LQLW!�&6��
����/(1� �FKRRVH�
����&6�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�
����
/���&� �PDNH&ODVV���
����&6�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �&�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�&6�
`

PDNH)LHOG�&/$66��^
����),(/'� �QHZ�MDYD�ODQJ�UHIOHFW�)LHOG�
����MDYD�ODQJ�UHIOHFW�)LHOG��LQLW!�),(/'��
����),(/'�MDYD�ODQJ�UHIOHFW�)LHOG�FOD]]�� �&/$66�
����6/27� �FKRRVH�
����),(/'�MDYD�ODQJ�UHIOHFW�)LHOG�VORW�� �6/27�
����1$0(� �BVWULQJFRQVW���
����),(/'�MDYD�ODQJ�UHIOHFW�)LHOG�QDPH�� �1$0(�
����7<3(� �PDNH&ODVV���
����),(/'�MDYD�ODQJ�UHIOHFW�)LHOG�W\SH�� �7<3(�
����
����MDYD�ODQJ�)LHOG�LQWHUQILHOG�� �),(/'�
����UHWXUQ� �MDYD�ODQJ�)LHOG�LQWHUQILHOG�
`

PDNH0HWKRG�&/$66��^
����0(7+2'� �QHZ�MDYD�ODQJ�UHIOHFW�0HWKRG�
����MDYD�ODQJ�UHIOHFW�0HWKRG��LQLW!�0(7+2'��
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�FOD]]�� �&/$66�
����6/27� �FKRRVH�
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�VORW�� �6/27�
����1$0(� �BVWULQJFRQVW���
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�QDPH�� �1$0(�
����5(78517<3(� �PDNH&ODVV���
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�UHWXUQ7\SH�� �
5(78517<3(�
����3$5$0(7(57<3(6� �PDNH&ODVV$UUD\���
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�SDUDPHWHU7\SHV�� �
3$5$0(7(57<3(6�
����(;&(37,217<3(6� �PDNH&ODVV$UUD\���
����0(7+2'�MDYD�ODQJ�UHIOHFW�0HWKRG�H[FHSWLRQ7\SHV�� �
(;&(37,217<3(6�
����02'6� �FKRRVH�
����0(7+2'�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�PRGV�� �02'6�
����
����MDYD�ODQJ�UHIOHFW�0HWKRG�LQWHUQPHWKRG�� �0(7+2'�
����UHWXUQ� �MDYD�ODQJ�UHIOHFW�0HWKRG�LQWHUQPHWKRG�
`

PDNH&RQVWUXFWRU�&/$66��^
����&216758&725� �QHZ�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�
����MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU��LQLW!�&216758&725��
����&216758&725�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�FOD]]�� �
&/$66�
����6/27� �FKRRVH�
����&216758&725�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�VORW�� �
6/27�
����3$5$0(7(57<3(6� �PDNH&ODVV$UUD\���

282

����&216758&725�
MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�SDUDPHWHU7\SHV�� �
3$5$0(7(57<3(6�
����(;&(37,217<3(6� �PDNH&ODVV$UUD\���
����&216758&725�
MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�H[FHSWLRQ7\SHV�� �
(;&(37,217<3(6�
����02'6� �FKRRVH�
����&216758&725�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�PRGV�� �
02'6�

����MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�LQWHUQFRQVWUXFWRU�� �
&216758&725�
����UHWXUQ� �
MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�LQWHUQFRQVWUXFWRU�
`

PDNH,QVWDQWLDWLRQ([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,QVWDQWLDWLRQ([FHSWLRQ�
����MDYD�ODQJ�,QVWDQWLDWLRQ([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,QVWDQWLDWLRQ([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

PDNH,OOHJDO$FFHVV([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO$FFHVV([FHSWLRQ�
����MDYD�ODQJ�,OOHJDO$FFHVV([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO$FFHVV([FHSWLRQ��LQLW!�(;1��675��
����UHVXOW� �FKRRVH�(;1�
`

PDNH,OOHJDO$UJXPHQW([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ�
����MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�,OOHJDO$UJXPHQW([FHSWLRQ��LQLW!�(;1��675��
����UHVXOW� �FKRRVH�(;1�
`

PDNH,QYRFDWLRQ7DUJHW([FHSWLRQ�&$7&+��^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�
MDYD�ODQJ�UHIOHFW�,QYRFDWLRQ7DUJHW([FHSWLRQ�
����
MDYD�ODQJ�UHIOHFW�,QYRFDWLRQ7DUJHW([FHSWLRQ��LQLW!�(;1��
����
MDYD�ODQJ�UHIOHFW�,QYRFDWLRQ7DUJHW([FHSWLRQ��LQLW!�(;1��
&$7&+��
����
MDYD�ODQJ�UHIOHFW�,QYRFDWLRQ7DUJHW([FHSWLRQ��LQLW!�(;1��
&$7&+��675��
����UHVXOW� �FKRRVH�(;1�
`

PDNH&ODVV1RW)RXQG([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�&ODVV1RW)RXQG([FHSWLRQ�
����MDYD�ODQJ�&ODVV1RW)RXQG([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�&ODVV1RW)RXQG([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�ODQJ�&ODVV�IRU1DPH�1$0(��^
����WKURZ� �PDNH&ODVV1RW)RXQG([FHSWLRQ���
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV�QHZ,QVWDQFH�&/$66��^
����2%-� �
5HIOHFWLRQ+DQGOHUBPDNH2EMHFW$QG&DOO=HUR$UJ&RQVWUXFWRU�&/$
66��
����(;1�� �PDNH,QVWDQWLDWLRQ([FHSWLRQ���
����(;1�� �PDNH,OOHJDO$FFHVV([FHSWLRQ���
����WKURZ� �FKRRVH�(;1���(;1��
����UHWXUQ� �FKRRVH�2%-�
`

MDYD�ODQJ�&ODVV�LV,QVWDQFH�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�LV$VVLJQDEOH)URP�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�LV,QWHUIDFH�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�LV$UUD\�&��^

����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�LV3ULPLWLYH�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�JHW1DPH�&��^
����675� �BVWULQJFRQVW���
����UHWXUQ� �FKRRVH�675�
`

MDYD�ODQJ�&ODVV�JHW&ODVV/RDGHU�&��^
����UHWXUQ� �PDNH&ODVV/RDGHU���
`

MDYD�ODQJ�&ODVV�JHW6XSHUFODVV�&��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV�JHW,QWHUIDFHV�&��^
����UHWXUQ� �PDNH&ODVV$UUD\���
`

MDYD�ODQJ�&ODVV�JHW&RPSRQHQW7\SH�&��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV�JHW0RGLILHUV�&��^
����UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�JHW6LJQHUV�&��^
����26� �QHZ�>/MDYD�ODQJ�2EMHFW�
����MDYD�ODQJ�2EMHFW��LQLW!�26��
����/(1� �FKRRVH�
����26�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�
����
/���2� �PDNH6LJQHU���
����26�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �2�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�26�
`

MDYD�ODQJ�&ODVV�VHW6LJQHUV�26��^
/���2� �26�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�
����MDYD�ODQJ�&ODVV�LQWHUQVLJQHU�� �2�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�
`

MDYD�ODQJ�&ODVV�JHW3ULPLWLYH&ODVV�1$0(��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV�JHW'HFODULQJ&ODVV�&��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV�JHW&ODVVHV�&��^
����UHWXUQ� �PDNH&ODVV$UUD\���
`

MDYD�ODQJ�&ODVV�JHW)LHOGV��7+,6��:+,&+��^
����)6� �QHZ�>/MDYD�ODQJ�UHIOHFW�)LHOG�
����MDYD�ODQJ�2EMHFW��LQLW!�)6��
����/(1� �FKRRVH�
����)6�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�
����
/���)� �PDNH)LHOG�7+,6��
����)6�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �)�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�)6�
`

MDYD�ODQJ�&ODVV�JHW)LHOG��7+,6��1$0(��:+,&+��^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1R6XFK)LHOG([FHSWLRQ�
����MDYD�ODQJ�1R6XFK)LHOG([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�1R6XFK)LHOG([FHSWLRQ��LQLW!�(;1��675��
����WKURZ� �FKRRVH�(;1�
����
����UHWXUQ� �PDNH)LHOG�7+,6��
`

MDYD�ODQJ�&ODVV�JHW0HWKRGV��7+,6��:+,&+��^
����06� �QHZ�>/MDYD�ODQJ�UHIOHFW�0HWKRG�
����MDYD�ODQJ�2EMHFW��LQLW!�06��
����/(1� �FKRRVH�

283

����06�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�
����
/���0� �PDNH0HWKRG�7+,6��
����06�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �0�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�06�
`

PDNH1R6XFK0HWKRG([FHSWLRQ���^
����675� �BVWULQJFRQVW���
����(;1� �QHZ�MDYD�ODQJ�1R6XFK0HWKRG([FHSWLRQ�
����MDYD�ODQJ�1R6XFK0HWKRG([FHSWLRQ��LQLW!�(;1��
����MDYD�ODQJ�1R6XFK0HWKRG([FHSWLRQ��LQLW!�(;1��675��
����UHWXUQ� �FKRRVH�(;1�
`

MDYD�ODQJ�&ODVV�JHW0HWKRG��7+,6��1$0(��3$5$0(7(57<3(6��
:+,&+��^
����WKURZ� �PDNH1R6XFK0HWKRG([FHSWLRQ���
����UHWXUQ� �PDNH0HWKRG�7+,6��
`

MDYD�ODQJ�&ODVV�JHW&RQVWUXFWRUV��7+,6��:+,&+��^
����&6� �QHZ�>/MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�
����MDYD�ODQJ�2EMHFW��LQLW!�&6��
����/(1� �FKRRVH�
����&6�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�� �/(1�
����
/���&� �PDNH&RQVWUXFWRU�7+,6��
����&6�MDYD�ODQJ�2EMHFW�DUUD\HOHPHQW�� �&�
����JRWR�/��1�

1���UHWXUQ� �FKRRVH�&6�
`

MDYD�ODQJ�&ODVV�JHW&RQVWUXFWRU��7+,6��3$5$0(7(57<3(6��
:+,&+��^
����WKURZ� �PDNH1R6XFK0HWKRG([FHSWLRQ���
����UHWXUQ� �PDNH&RQVWUXFWRU�7+,6��
`

��MDYD�ODQJ�&ODVV/RDGHU��

PDNH&ODVV/RDGHU���^
����UHWXUQ� �MDYD�ODQJ�&ODVV/RDGHU�LQWHUQORDGHU�
`

MDYD�ODQJ�&ODVV/RDGHU�LQLW�7+,6��^
����MDYD�ODQJ�&ODVV/RDGHU�LQWHUQORDGHU�� �7+,6�
`

MDYD�ODQJ�&ODVV/RDGHU�GHILQH&ODVV��7+,6��1$0(��'$7$��
2))6(7��/(1*7+��^
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV/RDGHU�UHVROYH&ODVV��7+,6��&��^
`

MDYD�ODQJ�&ODVV/RDGHU�ILQG6\VWHP&ODVV��7+,6��1$0(��^
����WKURZ� �PDNH&ODVV1RW)RXQG([FHSWLRQ���
����UHWXUQ� �PDNH&ODVV���
`

MDYD�ODQJ�&ODVV/RDGHU�JHW6\VWHP5HVRXUFH$V6WUHDP��7+,6��
1$0(��^
����85/� �MDYD�ODQJ�&ODVV/RDGHU�JHW6\VWHP5HVRXUFH�1$0(��
����UHWXUQ� �MDYD�QHW�85/�RSHQ6WUHDP�85/��
`

MDYD�ODQJ�&ODVV/RDGHU�JHW6\VWHP5HVRXUFH$V1DPH��7+,6��
1$0(��^
����UHWXUQ� �BVWULQJFRQVW���
`

��MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU��

MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�JHW0RGLILHUV�7+,6��^
����UHWXUQ� �7+,6�MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�PRGV�
`

MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�QHZ,QVWDQFH�7+,6��$5*6��^
����$5*6�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�
����2%-� �
5HIOHFWLRQ+DQGOHUBPDNH2EMHFW$QG&DOO$UELWUDU\&RQVWUXFWRU�$
5*6��
����&$7&+� �FDWFK��MDYD�ODQJ�7KURZDEOH��2%-�
����(;1�� �PDNH,QVWDQWLDWLRQ([FHSWLRQ���
����(;1�� �PDNH,OOHJDO$FFHVV([FHSWLRQ���
����(;1�� �PDNH,OOHJDO$UJXPHQW([FHSWLRQ���
����(;1�� �PDNH,QYRFDWLRQ7DUJHW([FHSWLRQ�&$7&+��

����WKURZ� �FKRRVH�(;1���(;1���(;1���(;1��
����UHWXUQ� �FKRRVH�2%-�
`

��MDYD�ODQJ�UHIOHFW�0HWKRG��

MDYD�ODQJ�UHIOHFW�0HWKRG�JHW0RGLILHUV�7+,6��^
����UHWXUQ� �7+,6�MDYD�ODQJ�UHIOHFW�0HWKRG�PRGV�
`

MDYD�ODQJ�UHIOHFW�0HWKRG�LQYRNH�7+,6��7$5*(7��$5*6��^
����$5*6�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�
����2%-� �5HIOHFWLRQ+DQGOHUBFDOO$UELWUDU\0HWKRG�7$5*(7��
$5*6��
����&$7&+� �FDWFK��MDYD�ODQJ�7KURZDEOH��2%-�
����(;1�� �PDNH,OOHJDO$FFHVV([FHSWLRQ���
����(;1�� �PDNH,OOHJDO$UJXPHQW([FHSWLRQ���
����(;1�� �PDNH,QYRFDWLRQ7DUJHW([FHSWLRQ�&$7&+��
����WKURZ� �FKRRVH�(;1���(;1���(;1��
����UHWXUQ� �FKRRVH�2%-�
`

��MDYD�XWLO�5HVRXUFH%XQGOH��

MDYD�XWLO�5HVRXUFH%XQGOH�JHW&ODVV&RQWH[W���^
����UHWXUQ� �PDNH&ODVV$UUD\���
`

��MDYD�XWLO�]LS�,QIODWHU��

MDYD�XWLO�]LS�,QIODWHU�VHW'LFWLRQDU\�7+,6��%��2))��/(1��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�
����
����1(:1(('',&7� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�QHHGV'LFWLRQDU\�� �
1(:1(('',&7�
`

MDYD�XWLO�]LS�,QIODWHU�LQIODWH�7+,6��%��2))��/(1��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�
����
����9$/� �FKRRVH�
����%�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �9$/�
����1(:/(1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�OHQ�� �1(:/(1�
����1(:727$/,1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO,Q�� �1(:727$/,1�
����1(:727$/287� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO2XW�� �1(:727$/287�
����1(:2))� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�RII�� �1(:2))�
����1(:),1,6+('� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�ILQLVKHG�� �1(:),1,6+('�
����1(:1(('',&7� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�QHHGV'LFWLRQDU\�� �
1(:1(('',&7�

����(;1� �QHZ�MDYD�XWLO�]LS�'DWD)RUPDW([FHSWLRQ�
����675� �BVWULQJFRQVW���
����MDYD�XWLO�]LS�'DWD)RUPDW([FHSWLRQ��LQLW!�(;1��
����MDYD�XWLO�]LS�'DWD)RUPDW([FHSWLRQ��LQLW!�(;1��675��
����WKURZ� �FKRRVH�(;1�
`

MDYD�XWLO�]LS�,QIODWHU�JHW$GOHU�7+,6��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�
����
����UHWXUQ� �FKRRVH�
`

MDYD�XWLO�]LS�,QIODWHU�JHW7RWDO,Q�7+,6��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�

����UHWXUQ� �7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO,Q�
`

MDYD�XWLO�]LS�,QIODWHU�JHW7RWDO2XW�7+,6��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�

����UHWXUQ� �7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO2XW�
`

MDYD�XWLO�]LS�,QIODWHU�UHVHW�7+,6��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�

����1(:727$/,1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO,Q�� �1(:727$/,1�
����1(:727$/287� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�WRWDO2XW�� �1(:727$/287�
����1(:),1,6+('� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�ILQLVKHG�� �1(:),1,6+('�
����1(:1(('',&7� �FKRRVH�

284

����7+,6�MDYD�XWLO�]LS�,QIODWHU�QHHGV'LFWLRQDU\�� �
1(:1(('',&7�
`

MDYD�XWLO�]LS�,QIODWHU�HQG�7+,6��^
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�
`

MDYD�XWLO�]LS�,QIODWHU�LQLW�7+,6��12:5$3��^
����6750� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�,QIODWHU�VWUP�� �6750�
����MDYD�XWLO�]LS�,QIODWHU�UHVHW�7+,6��
`

��MDYD�XWLO�]LS�'HIODWHU��

DFFHVV'HIODWHU�7+,6��^
����7+,6�MDYD�XWLO�]LS�'HIODWHU�VHW3DUDPV�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�VWUP�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�ILQLVK�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�OHYHO�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�VWUDWHJ\�
����
����)$/6(� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�VHW3DUDPV�� �)$/6(�
`

MDYD�XWLO�]LS�'HIODWHU�VHW'LFWLRQDU\�7+,6��%��2))��/(1��^
����DFFHVV'HIODWHU�7+,6��
`

MDYD�XWLO�]LS�'HIODWHU�GHIODWH�7+,6��%��2))��/(1��^
����DFFHVV'HIODWHU�7+,6��
����
����9$/� �FKRRVH�
����%�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �9$/�
����1(:/(1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�OHQ�� �1(:/(1�
����1(:727$/,1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO,Q�� �1(:727$/,1�
����1(:727$/287� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO2XW�� �1(:727$/287�
����1(:2))� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�RII�� �1(:2))�
����1(:),1,6+('� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�ILQLVKHG�� �1(:),1,6+('�
����
����UHWXUQ� �FKRRVH�
`

MDYD�XWLO�]LS�'HIODWHU�JHW$GOHU�7+,6��^
����DFFHVV'HIODWHU�7+,6��
����
����UHWXUQ� �FKRRVH�
`

MDYD�XWLO�]LS�'HIODWHU�JHW7RWDO,Q�7+,6��^
����DFFHVV'HIODWHU�7+,6��

����UHWXUQ� �7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO,Q�
`

MDYD�XWLO�]LS�'HIODWHU�JHW7RWDO2XW�7+,6��^
����DFFHVV'HIODWHU�7+,6��

����UHWXUQ� �7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO2XW�
`

MDYD�XWLO�]LS�'HIODWHU�UHVHW�7+,6��^
����DFFHVV'HIODWHU�7+,6��

����1(:727$/,1� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO,Q�� �1(:727$/,1�
����1(:727$/287� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�WRWDO2XW�� �1(:727$/287�
����1(:),1,6+('� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�ILQLVKHG�� �1(:),1,6+('�
`

MDYD�XWLO�]LS�'HIODWHU�HQG�7+,6��^
����DFFHVV'HIODWHU�7+,6��
`

MDYD�XWLO�]LS�'HIODWHU�LQLW�7+,6��12:5$3��^
����6750� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�'HIODWHU�VWUP�� �6750�
����MDYD�XWLO�]LS�'HIODWHU�UHVHW�7+,6��
`

��MDYD�XWLO�]LS�&5&����

MDYD�XWLO�]LS�&5&���XSGDWH�7+,6��%��2))��/(1��^

����9$/� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�&5&���FUF�� �9$/�
����
����%�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�
`

MDYD�XWLO�]LS�&5&���XSGDWH��7+,6��%��^
����9$/� �FKRRVH�
����7+,6�MDYD�XWLO�]LS�&5&���FUF�� �9$/�
`

��MDYD�DZW�LPDJH�&RORU0RGHO��

MDYD�DZW�LPDJH�&RORU0RGHO�GHOHWHS'DWD�7+,6��^
`

��VXQ�DZW�ZLQGRZV�:7RRONLW��

VXQ�DZW�ZLQGRZV�:7RRONLW�LQLW�7+,6��(9(177+5($'���
MDYD�ODQJ�7KUHDG����^
`

VXQ�DZW�ZLQGRZV�:7RRONLW�HYHQW/RRS�7+,6��^
7���JRWR�($��(%��(&��('��((��()��(*��(+��(,��(-��(.��(/��
(0��(1��(<��(=��(���(���(���(���(���(���(���(;,7�

($��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$&7,21� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�KDQGOH$FWLRQ�7$5*(7��
$&7,21��
����JRWR�7�

(%��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����VXQ�DZW�ZLQGRZV�:%XWWRQ3HHU�KDQGOH$FWLRQ�7$5*(7��
����JRWR�7�

(&��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�OLQH8S�7$5*(7��$07��
����JRWR�7�

('��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�OLQH'RZQ�7$5*(7��$07��
����JRWR�7�

((��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�SDJH8S�7$5*(7��$07��
����JRWR�7�

()��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�SDJH'RZQ�7$5*(7��$07��
����JRWR�7�

(*��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�GUDJ%HJLQ�7$5*(7��
$07��
����JRWR�7�

(+��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�GUDJ$EVROXWH�7$5*(7��
$07��
����JRWR�7�

(,��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����$07� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:6FUROOEDU3HHU�GUDJ(QG�7$5*(7��$07��
����JRWR�7�

(-��7$5*(7� �VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�PHQX,WHP3HHUV�
����&2'(� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�KDQGOH$FWLRQ�7$5*(7��
&2'(��
����JRWR�7�

(.��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�KDQGOH&DQFHO�7$5*(7��
����JRWR�7�

(/��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����675� �PDNH6WULQJ���
����
VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�KDQGOH6HOHFWHG�7$5*(7��
675��
����JRWR�7�

(0��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�

285

����
VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�SRVW)RFXV2Q$FWLYDWH�7$5*(7��
����JRWR�7�

(1��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����VXQ�DZW�ZLQGRZV�:7H[W)LHOG3HHU�KDQGOH$FWLRQ�7$5*(7��
����JRWR�7�

(<��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����;� �FKRRVH�
����<� �FKRRVH�
����:� �FKRRVH�
����+� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�KDQGOH5HSDLQW�7$5*(7��
;��<��:��+��
����JRWR�7�

(=��7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����;� �FKRRVH�
����<� �FKRRVH�
����:� �FKRRVH�
����+� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�KDQGOH([SRVH�7$5*(7��
;��<��:��+��
����JRWR�7�

(���7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����;� �FKRRVH�
����<� �FKRRVH�
����:� �FKRRVH�
����+� �FKRRVH�
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�KDQGOH3DLQW�7$5*(7��;��
<��:��+��
����JRWR�7�

(���&/,3%2$5'� �VXQ�DZW�ZLQGRZV�:7RRONLW�WKH&OLSERDUG�
����
VXQ�DZW�ZLQGRZV�:&OLSERDUG�ORVW6HOHFWLRQ2ZQHUVKLS�&/,3%2$
5'��
����JRWR�7�
����
(���(97� �QHZ�MDYD�DZW�HYHQW�.H\(YHQW�
����7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����7$5*(7� �7$5*(7�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�WDUJHW�
����,'� �FKRRVH�
����:+(1� �FKRRVH�
����02'6� �FKRRVH�
����.(<&2'(� �FKRRVH�
����.(<&+$5� �FKRRVH�
����MDYD�DZW�HYHQW�.H\(YHQW��LQLW!�(97��7$5*(7��,'��:+(1��
02'6��.(<&2'(��.(<&+$5��
����JRWR�3267�

(���(97� �QHZ�MDYD�DZW�HYHQW�0RXVH(YHQW�
����7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����7$5*(7� �7$5*(7�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�WDUJHW�
����,'� �FKRRVH�
����:+(1� �FKRRVH�
����02'6� �FKRRVH�
����;� �FKRRVH�
����<� �FKRRVH�
����&/,&.6� �FKRRVH�
����32383� �FKRRVH�
����MDYD�DZW�HYHQW�0RXVH(YHQW��LQLW!�(97��7$5*(7��,'��
:+(1��02'6��;��<��&/,&.6��32383��
����JRWR�3267�

(���(97� �QHZ�MDYD�DZW�HYHQW�:LQGRZ(YHQW�
����7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����7$5*(7� �7$5*(7�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�WDUJHW�
����,'� �FKRRVH�
����MDYD�DZW�HYHQW�:LQGRZ(YHQW��LQLW!�(97��7$5*(7��,'��
����JRWR�3267�

(���7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����
VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�YDOXH&KDQJHG�7$5*(7��
����JRWR�7�

(���(97� �QHZ�MDYD�DZW�HYHQW�)RFXV(YHQW�
����7$5*(7� �VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�
����7$5*(7� �7$5*(7�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�WDUJHW�
����,'� �FKRRVH�
����,6703� �FKRRVH�
����MDYD�DZW�HYHQW�)RFXV(YHQW��LQLW!�(97��7$5*(7��,'��
,6703��
����JRWR�3267�

3267�
����VXQ�DZW�ZLQGRZV�:7RRONLW�SRVW(YHQW�(97��
����JRWR�7�

(;,7�
����FKRRVH�
`

VXQ�DZW�ZLQGRZV�:7RRONLW�JHW&RPER+HLJKW2IIVHW���^
����UHWXUQ� �FKRRVH����LQW��
`

VXQ�DZW�ZLQGRZV�:7RRONLW�PDNH&RORU0RGHO���^
����%,76� �FKRRVH�
����
����50$6.� �FKRRVH�
����*0$6.� �FKRRVH�
����%0$6.� �FKRRVH�
����$0$6.� �FKRRVH�
����0�� �QHZ�MDYD�DZW�LPDJH�'LUHFW&RORU0RGHO�
����MDYD�DZW�LPDJH�'LUHFW&RORU0RGHO��LQLW!�0���%,76��
50$6.��*0$6.��%0$6.��$0$6.��
����
����6,=(� �FKRRVH�
����&0$3� �PDNH%\WH$UUD\���
����67$57� �FKRRVH�
����+6/3+$� �FKRRVH�
����75$16� �FKRRVH�
����0�� �QHZ�MDYD�DZW�LPDJH�,QGH[&RORU0RGHO�
����MDYD�DZW�LPDJH�,QGH[&RORU0RGHO��LQLW!�0���%,76��6,=(��
&0$3��67$57��+6/3+$��75$16����,,>%,=,�9��
����
����UHWXUQ� �FKRRVH�0���0��
`

VXQ�DZW�ZLQGRZV�:7RRONLW�JHW6FUHHQ5HVROXWLRQ�7+,6��^
����UHWXUQ� �FKRRVH����LQW��
`

VXQ�DZW�ZLQGRZV�:7RRONLW�JHW6FUHHQ:LGWK�7+,6��^
����UHWXUQ� �FKRRVH����LQW��
`

VXQ�DZW�ZLQGRZV�:7RRONLW�JHW6FUHHQ+HLJKW�7+,6��^
����UHWXUQ� �FKRRVH����LQW��
`

VXQ�DZW�ZLQGRZV�:7RRONLW�V\QF�7+,6��^
`

VXQ�DZW�ZLQGRZV�:7RRONLW�EHHS�7+,6��^
`

VXQ�DZW�ZLQGRZV�:7RRONLW�ORDG6\VWHP&RORUV�7+,6��
&2/25$55$<���LQW>@����^
����&2/25$55$<�MDYD�ODQJ�2EMHFW�DUUD\OHQJWK�
����9$/� �FKRRVH�
����&2/25$55$<�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �9$/�
`

��VXQ�DZW�ZLQGRZV�:2EMHFW3HHU��

VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�LQLW,'V���^
`

��VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU��

PDNH3RLQW�;��<��^
����;� �FKRRVH�
����<� �FKRRVH�
����3� �QHZ�MDYD�DZW�3RLQW�
����MDYD�DZW�3RLQW��LQLW!�3��;��<��
����UHWXUQ� �FKRRVH�3�
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�BEHJLQ9DOLGDWH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�HQG9DOLGDWH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�VWDUW�7+,6��^
����;� �FKRRVH�
����<� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�;�� �;�
����7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�<�� �<�
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DOO3HHUV�� �7+,6�
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�BGLVSRVH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�GLVDEOH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�HQDEOH�7+,6��^

286

`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�KLGH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�VKRZ�7+,6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�UHVKDSH�7+,6��;��<��:��+��
^
����7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�;�� �;�
����7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�<�� �<�
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�JHW/RFDWLRQ2Q6FUHHQ�7+,6��
^
����;� �7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�;�
����<� �7+,6�VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�<�
����3� �QHZ�MDYD�DZW�3RLQW�
����MDYD�DZW�3RLQW��LQLW!�3��;��<��
����UHWXUQ� �FKRRVH�3�
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�VHW&XUVRU�7+,6��&85625��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�VHW)RQW�7+,6��)217��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�VHW=2UGHU3RVLWLRQ�7+,6��
&20321(17��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�BVHW%DFNJURXQG�7+,6��
&2/25��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�BVHW)RUHJURXQG�7+,6��
&2/25��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�DGG1DWLYH'URS7DUJHW�7+,6��
^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�UHPRYH1DWLYH'URS7DUJHW�7+,
6��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�QDWLYH+DQGOH(YHQW�7+,6��
(9(17��^
`

VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�UHTXHVW)RFXV�7+,6��^
`

��VXQ�DZW�ZLQGRZV�::LQGRZ3HHU��

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�BVHW5HVL]DEOH�7+,6��%22/��^
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�BVHW7LWOH�7+,6��675��^
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�WR%DFN�7+,6��^
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�WR)URQW�7+,6��^
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�XSGDWH,QVHWV�7+,6��,16(76��^
`

VXQ�DZW�ZLQGRZV�::LQGRZ3HHU�JHW&RQWDLQHU(OHPHQW�7+,6��
&217$,1(5��,1'(;��^
����UHWXUQ� �MDYD�DZW�&RQWDLQHU�JHW&RPSRQHQW�&217$,1(5��
,1'(;��
`

��VXQ�DZW�ZLQGRZV�:)UDPH3HHU��

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
����67$7(� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VWDWH�� �67$7(�
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�JHW6WDWH�7+,6��^
����UHWXUQ� �7+,6�VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VWDWH�
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�BVHW,FRQ,PDJH�7+,6��5(3��^
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�JHW6\V,FRQ+HLJKW�7+,6��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�JHW6\V,FRQ:LGWK�7+,6��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�S6HW,002SWLRQ�7+,6��675��^
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�UHVKDSH�7+,6��;��<��:��+��^
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�UHVKDSH�7+,6��;��<��:��
+��
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VHW,FRQ,PDJH)URP,QW5DVWHU'DWD�
7+,6��%,76��'7:,'7+��3,;+(,*+7��3,;:,'7+��^
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VHW0HQX%DU��7+,6��0(18%$5��^
`

VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VHW6WDWH�7+,6��67$7(��^
����7+,6�VXQ�DZW�ZLQGRZV�:)UDPH3HHU�VWDWH�� �67$7(�
`

��VXQ�DZW�ZLQGRZV�:'LDORJ3HHU��

VXQ�DZW�ZLQGRZV�:'LDORJ3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:'LDORJ3HHU�VKRZ0RGDO�7+,6��^
`

VXQ�DZW�ZLQGRZV�:'LDORJ3HHU�HQG0RGDO�7+,6��^
`

VXQ�DZW�ZLQGRZV�:'LDORJ3HHU�S6HW,002SWLRQ�7+,6��675��^
`

��VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU��

VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�VKRZ�7+,6��^
`

VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�WDUJHW6HW'LUHFWRU\B1R&OLH
QW&RGH�7+,6��',$/2*��675��^
����',$/2*�MDYD�DZW�)LOH'LDORJ�ILOH�� �675�
`

VXQ�DZW�ZLQGRZV�:)LOH'LDORJ3HHU�WDUJHW6HW)LOHB1R&OLHQW&RG
H�7+,6��',$/2*��675��^
����',$/2*�MDYD�DZW�)LOH'LDORJ�GLU�� �675�
`

��VXQ�DZW�ZLQGRZV�:&DQYDV3HHU��

VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�DGG,WHP�7+,6��675��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�UHPRYH�7+,6��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�VHOHFW�7+,6��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:&KRLFH3HHU�UHVKDSH�7+,6��;��<��:��+��^
����VXQ�DZW�ZLQGRZV�:&RPSRQHQW3HHU�UHVKDSH�7+,6��;��<��:��
+��
`

��VXQ�DZW�ZLQGRZV�:&DQYDV3HHU��

287

VXQ�DZW�ZLQGRZV�:&DQYDV3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

��VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU��

VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�FUHDWH�7+,6��0(18��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
����VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�PHQX,WHP3HHUV�� �7+,6�
`

VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�BGLVSRVH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�BVHW/DEHO�7+,6��675��^
`

VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�HQDEOH�7+,6��%22/��^
`

VXQ�DZW�ZLQGRZV�:0HQX,WHP3HHU�LQLW,'V���^
`

��VXQ�DZW�ZLQGRZV�:0HQX3HHU��

VXQ�DZW�ZLQGRZV�:0HQX3HHU�FUHDWH0HQX�7+,6��0(18%$5��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:0HQX3HHU�FUHDWH6XE0HQX�7+,6��0(18��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:0HQX3HHU�DGG6HSDUDWRU�7+,6��^
`

VXQ�DZW�ZLQGRZV�:0HQX3HHU�GHO,WHP�7+,6��,1'(;��^
`

��VXQ�DZW�ZLQGRZV�:0HQX%DU3HHU��

VXQ�DZW�ZLQGRZV�:0HQX%DU3HHU�FUHDWH�7+,6��)5$0(��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:0HQX%DU3HHU�DGG0HQX�7+,6��0(18��^
`

VXQ�DZW�ZLQGRZV�:0HQX%DU3HHU�GHO0HQX�7+,6��,1'(;��^
`

��VXQ�DZW�ZLQGRZV�:&KHFNER[0HQX,WHP3HHU��

VXQ�DZW�ZLQGRZV�:&KHFNER[0HQX,WHP3HHU�VHW6WDWH�7+,6��
%22/��^
`

��VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU��

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�HQDEOH(GLWLQJ�7+,6��
%22/��^
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�JHW6HOHFWLRQ6WDUW�7+,6
��^
����UHWXUQ� �7+,6�
VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHOHFWIURP�
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�JHW6HOHFWLRQ(QG�7+,6��
^
����UHWXUQ� �7+,6�
VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHOHFWWR�
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHOHFW�7+,6��)520��72��
^
����7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHOHFWIURP�� �
)520�
����7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHOHFWWR�� �
72�
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�JHW7H[W�7+,6��^
����UHWXUQ� �7+,6�
VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�VHW7H[W�7+,6��675��^
����7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�� �675�
`

VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�LQLW,'V���^
`

��VXQ�DZW�ZLQGRZV�:7H[W$UHD3HHU��

VXQ�DZW�ZLQGRZV�:7H[W$UHD3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:7H[W$UHD3HHU�LQVHUW7H[W�7+,6��675��326��
^
����7(;7� �7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�
����1(:7(;7� �PXQJH6WULQJV�7(;7��675��
����7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�� �
1(:7(;7�
`

VXQ�DZW�ZLQGRZV�:7H[W$UHD3HHU�UHSODFH7H[W�7+,6��675��
)520��72��^
����7(;7� �7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�
����1(:7(;7� �PXQJH6WULQJV�7(;7��675��
����7+,6�VXQ�DZW�ZLQGRZV�:7H[W&RPSRQHQW3HHU�WH[W�� �
1(:7(;7�
`

��VXQ�DZW�ZLQGRZV�:7H[W)LHOG3HHU��

VXQ�DZW�ZLQGRZV�:7H[W)LHOG3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:7H[W)LHOG3HHU�VHW(FKR&KDUDFWHU�7+,6��&+��
^
`

��VXQ�DZW�ZLQGRZV�:/DEHO3HHU��

VXQ�DZW�ZLQGRZV�:/DEHO3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:/DEHO3HHU�VHW$OLJQPHQW�7+,6��$/,*1��^
`

VXQ�DZW�ZLQGRZV�:/DEHO3HHU�VHW7H[W�7+,6��675��^
`

��VXQ�DZW�ZLQGRZV�:&KHFNER[3HHU��

VXQ�DZW�ZLQGRZV�:&KHFNER[3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:&KHFNER[3HHU�VHW&KHFNER[*URXS�7+,6��
*5283��^
`

VXQ�DZW�ZLQGRZV�:&KHFNER[3HHU�VHW/DEHO�7+,6��675��^
`

VXQ�DZW�ZLQGRZV�:&KHFNER[3HHU�VHW6WDWH�7+,6��%22/��^
`

��VXQ�DZW�ZLQGRZV�:%XWWRQ3HHU��

VXQ�DZW�ZLQGRZV�:%XWWRQ3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:%XWWRQ3HHU�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:%XWWRQ3HHU�VHW/DEHO�7+,6��675��^
`

��VXQ�DZW�ZLQGRZV�:/LVW3HHU��

VXQ�DZW�ZLQGRZV�:/LVW3HHU�FUHDWH�7+,6��3$5(17��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:2EMHFW3HHU�S'DWD�� �3'7�
����0$;:,'7+� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:/LVW3HHU�PD[ZLGWK�� �0$;:,'7+�

288

`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�BDGG,WHP�7+,6��675��,1'(;��
:,'7+��^
����JRWR�<��1�
����
<���7+,6�VXQ�DZW�ZLQGRZV�:/LVW3HHU�PD[ZLGWK�� �:,'7+�

1���FKRRVH�
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�DGG,WHP��7+,6��675��,1'(;��
:,'7+��^
����JRWR�<��1�
����
<���7+,6�VXQ�DZW�ZLQGRZV�:/LVW3HHU�PD[ZLGWK�� �:,'7+�

1���FKRRVH�
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�GHO,WHPV�7+,6��)520��72��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�VHW0XOWLSOH6HOHFWLRQV�7+,6��
%22/��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�VHOHFW�7+,6��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�GHVHOHFW�7+,6��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�LV6HOHFWHG�7+,6��,1'(;��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�PDNH9LVLEOH�7+,6��,1'(;��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�XSGDWH0D[,WHP:LGWK�7+,6��^
`

VXQ�DZW�ZLQGRZV�:/LVW3HHU�JHW0D[:LGWK�7+,6��:,'7+��^
����UHWXUQ� �7+,6�VXQ�DZW�ZLQGRZV�:/LVW3HHU�PD[ZLGWK�
`

��VXQ�DZW�ZLQGRZV�:&OLSERDUG��

VXQ�DZW�ZLQGRZV�:&OLSERDUG�JHW&OLSERDUG7H[W�7+,6��^
����JRWR�1��5�
����
1���675� �PDNH6WULQJ���
����7+,6�VXQ�DZW�ZLQGRZV�:&OLSERDUG�WH[W�� �675�

5���UHWXUQ� �7+,6�VXQ�DZW�ZLQGRZV�:&OLSERDUG�WH[W�
`

VXQ�DZW�ZLQGRZV�:&OLSERDUG�LQLW���^
`

VXQ�DZW�ZLQGRZV�:&OLSERDUG�VHW&OLSERDUG2EMHFW�7+,6��2%-��
^
����VXQ�DZW�ZLQGRZV�:7RRONLW�WKH&OLSERDUG�� �7+,6�
����7+,6�VXQ�DZW�ZLQGRZV�:&OLSERDUG�WH[W�� �2%-�
`

VXQ�DZW�ZLQGRZV�:&OLSERDUG�VHW&OLSERDUG7H[W�7+,6��6756(/��
^
����VXQ�DZW�ZLQGRZV�:7RRONLW�WKH&OLSERDUG�� �7+,6�
����'7� �6756(/�
MDYD�DZW�GDWDWUDQVIHU�6WULQJ6HOHFWLRQ�GDWD�
����7+,6�VXQ�DZW�ZLQGRZV�:&OLSERDUG�WH[W�� �'7�
`

��VXQ�DZW�ZLQGRZV�:&RORU��

VXQ�DZW�ZLQGRZV�:&RORU�JHW'HIDXOW&RORU�,1'(;��^
����UHWXUQ� �FKRRVH�
`

��VXQ�DZW�ZLQGRZV�:)RQW0HWULFV��

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�LQLW�7+,6��^
����,176� �PDNH,QW$UUD\���
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�ZLGWKV�� �,176�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�DVFHQW�� �9�
����9� �FKRRVH�

����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�GHVFHQW�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�OHDGLQJ�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�KHLJKW�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�PD[$VFHQW�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�PD['HVFHQW�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�PD[+HLJKW�� �9�
����9� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�PD[$GYDQFH�� �9�
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�E\WHV:LGWK�7+,6��%<7(6��
,1'(;��/(1��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�FKDUV:LGWK�7+,6��&+$56��
,1'(;��/(1��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�VWULQJ:LGWK�7+,6��675��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�QHHGV&RQYHUVLRQ�)217��
)217'(6&��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�JHW0)&KDU6HJPHQW:LGWK�7+,6��
)217��)217'(6&��%22/��&+$56��)520��72��6(*6��/(1��^
����UHWXUQ� �FKRRVH�
`

��VXQ�DZW�ZLQGRZV�:'HIDXOW)RQW&KDUVHW��

VXQ�DZW�ZLQGRZV�:'HIDXOW)RQW&KDUVHW�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:'HIDXOW)RQW&KDUVHW�FDQ&RQYHUW�7+,6��&+��
^
����UHWXUQ� �FKRRVH�
`

��VXQ�DZW�ZLQGRZV�:3ULQW-RE��

VXQ�DZW�ZLQGRZV�:3ULQW-RE�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:3ULQW-RE�QHZ3DJH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:3ULQW-RE�IOXVK3DJH,PSO�7+,6��^
`

VXQ�DZW�ZLQGRZV�:3ULQW-RE�HQG,PSO�7+,6��^
`

��VXQ�DZW�ZLQGRZV�:*UDSKLFV��

VXQ�DZW�ZLQGRZV�:*UDSKLFV�LQLW,'V���^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FKHFN1R''UDZ���^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FUHDWH)URP&RPSRQHQW�7+,6��&203��
^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:*UDSKLFV�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FUHDWH)URP*UDSKLFV�7+,6��*��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:*UDSKLFV�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FUHDWH)URP+'&�7+,6��+'&��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:*UDSKLFV�S'DWD�� �3'7�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FUHDWH)URP3ULQW-RE�7+,6��-2%��^
����3'7� �FKRRVH�
����7+,6�VXQ�DZW�ZLQGRZV�:*UDSKLFV�S'DWD�� �3'7�
`

289

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GLVSRVH,PSO�7+,6��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�:��/RFN9LHZ5HVRXUFHV�7+,6��
'7��9,(:;��9,(:<��9,(::��9,(:+��/2&.0(7+2'��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�:��8Q/RFN9LHZ5HVRXUFHV�7+,6��
'7��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�JHW&OLS%RXQGV�7+,6��^
����;� �FKRRVH�
����<� �FKRRVH�
����:� �FKRRVH�
����+� �FKRRVH�
����5(&7� �QHZ�MDYD�DZW�5HFWDQJOH�
����MDYD�DZW�5HFWDQJOH��LQLW!�5(&7��;��<��:��+��
����UHWXUQ� �FKRRVH�5(&7�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FKDQJH&OLS�7+,6��;��<��:��+��
%22/��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�UHPRYH&OLS�7+,6��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FOHDU5HFW�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ5HFW�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�ILOO5HFW�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ/LQH�7+,6��;��<��;���<���^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�FRS\$UHD�7+,6��;��<��:��+��';��
'<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ$UF�7+,6��;��<��:��+��)520��
72��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�ILOO$UF�7+,6��;��<��:��+��)520��
72��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ2YDO�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�ILOO2YDO�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ3RO\JRQ�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�ILOO3RO\JRQ�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ3RO\OLQH�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ5RXQG5HFW�7+,6��;��<��:��+��
5;��5<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�ILOO5RXQG5HFW�7+,6��;��<��:��+��
5;��5<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�SULQW�7+,6��&20321(17��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY&OHDU5HFW�7+,6��;��<��:��+��
^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY&RS\$UHD�7+,6��;��<��:��+��
';��'<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ$UF�7+,6��;��<��:��+��
)520��72��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO$UF�7+,6��;��<��:��+��
)520��72��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ/LQH�7+,6��;��<��;���<���
^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ2YDO�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO2YDO�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ3RO\JRQ�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO3RO\JRQ�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ3RO\OLQH�7+,6��;6��<6��
&2817��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ5HFW�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO5HFW�7+,6��;��<��:��+��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY'UDZ5RXQG5HFW�7+,6��;��<��:��
+��5;��5<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO5RXQG5HFW�7+,6��;��<��:��
+��5;��5<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY)LOO6SDQV�7+,6��,7(5$725��
/21*��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GHY3ULQW�7+,6��&20321(17��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ6)&KDUV�7+,6��&+$56��)520��
72��;��<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ0)&KDUV6HJPHQW�7+,6��)217��
)217'(6&��&+$56��)520��72��;��<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ0)&KDUV&RQYHUWHG6HJPHQW�7+,
6��)217��)217'(6&��%<7(6��/(1��;��<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ%\WHV�7+,6��%<7(6��)520��
72��;��<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ%\WHV:LGWK�7+,6��%<7(6��
)520��72��;��<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ&KDUV:LGWK�7+,6��&+$56��
)520��72��;��<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ6WULQJ:LGWK�7+,6��675��;��
<��^
����UHWXUQ� �FKRRVH�
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�S6HW)RQW�7+,6��)217��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�S6HW)RUHJURXQG�7+,6��&2/25��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�VHW3DLQW0RGH�7+,6��^

290

`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�S6HW3DLQW0RGH�7+,6��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�VHW;250RGH�7+,6��&2/25��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�S6HW;250RGH�7+,6��&2/25��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�VHW2ULJLQ�7+,6��;��<��^
`

VXQ�DZW�ZLQGRZV�:*UDSKLFV�LPDJH&UHDWH�7+,6��,0$*(��^
`

��VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ��

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�RIIVFUHHQ,QLW�7+,6��
&2/25��^
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�GLVSRVH,PDJH�7+,6��^
`

FRQYHUW3L[HO�&0��'7��^
����3,;(/� �'7�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�
����MDYD�DZW�LPDJH�&RORU0RGHO�JHW$OSKD�&0��3,;(/��
����MDYD�DZW�LPDJH�&RORU0RGHO�JHW5HG�&0��3,;(/��
����MDYD�DZW�LPDJH�&RORU0RGHO�JHW*UHHQ�&0��3,;(/��
����MDYD�DZW�LPDJH�&RORU0RGHO�JHW%OXH�&0��3,;(/��
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�VHW%\WH3L[HOV�7+,6��;��
<��:��+��&0��%<7(6��2))��/(1��^
����FRQYHUW3L[HO�&0��%<7(6��
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�VHW,QW3L[HOV�7+,6��;��
<��:��+��&0��,176��2))��/(1��^
����FRQYHUW3L[HO�&0��,176��
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�ILQLVK�7+,6��%22/��^
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�LPDJH'UDZ�7+,6��*��;��
<��&2/25��^
`

VXQ�DZW�LPDJH�,PDJH5HSUHVHQWDWLRQ�LPDJH6WUHWFK�7+,6��*��
;��<��:��+��)520;��)520<��)520:��)520+��&2/25��^
`

��VXQ�DZW�LPDJH�2II6FUHHQ,PDJH6RXUFH��

VXQ�DZW�LPDJH�2II6FUHHQ,PDJH6RXUFH�VHQG3L[HOV�7+,6��^
����&21680(5� �7+,6�
VXQ�DZW�LPDJH�2II6FUHHQ,PDJH6RXUFH�WKH&RQVXPHU�
����
/���;� �FKRRVH�
����<� �FKRRVH�
����:� �FKRRVH�
����+� �FKRRVH�
����&0� �VXQ�DZW�ZLQGRZV�:7RRONLW�PDNH&RORU0RGHO���
����%<7(6� �PDNH%\WH$UUD\���
����2))� �FKRRVH�
����/(1� �FKRRVH�
����MDYD�DZW�LPDJH�,PDJH&RQVXPHU�VHW3L[HOV�&21680(5��;��
<��:��+��&0��%<7(6��2))��/(1��
��,,,,/MDYD�DZW�LPDJH�&RORU0RGHO�>%,,�9��
����JRWR�/��(;�
����
(;��FKRRVH�
`

��VXQ�DZW�LPDJH�-3(*,PDJH'HFRGHU��

VXQ�DZW�LPDJH�-3(*,PDJH'HFRGHU�UHDG,PDJH�7+,6��675($0��
%<7(6��^
1���,1387� �PDNH%\WH$UUD\���
����2))� �FKRRVH�
����/(1� �FKRRVH�
����%<7(� �MDYD�LR�,QSXW6WUHDP�UHDG�675($0��%<7(6��2))��
/(1��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��%<7(�
����
����'7� �FKRRVH�
����%<7(6�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �'7�
����
����JRWR�1��(;�

����
(;��675� �BVWULQJFRQVW���
����(55� �VXQ�DZW�LPDJH�-3(*,PDJH'HFRGHU�HUURU�675��
����(;1�� �FDWFK��MDYD�ODQJ�7KURZDEOH��(55�
����
����WKURZ� �FKRRVH�(;1���(;1��
`

��VXQ�DZW�LPDJH�*LI,PDJH'HFRGHU��

VXQ�DZW�LPDJH�*LI,PDJH'HFRGHU�SDUVH,PDJH�7+,6��;��<��:��
+��%22/��)/$*6��+($'(5��287387��&0��^
1���,1387� �PDNH%\WH$UUD\���
����2))� �FKRRVH�
����/(1� �FKRRVH�
����5(68/7� �
VXQ�DZW�LPDJH�*LI,PDJH'HFRGHU�UHDG%\WHV�7+,6��,1387��2))��
/(1��
����
����'7� �FKRRVH�
����287387�MDYD�ODQJ�2EMHFW�LQWDUUD\HOHPHQW�� �'7�
����
����JRWR�1��(;�
����
(;��UHWXUQ� �FKRRVH�
`

291

Appendix C: Ajax Reflection Specifications
Here I provide the complete text of the reflection specifications used by Ajax. They cover
the examples I used for this thesis.

MDYD�ODQJ�&ODVV�QHZ,QVWDQFH�>
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�PDLQ�^
��������FODVV DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW
����`
����VXQ�LR�&KDU7R%\WH&RQYHUWHU�JHW'HIDXOW�^
��������FODVV VXQ�LR�&KDU7R%\WH&S����
�������������VXQ�LR�&KDU7R%\WH
����`
����VXQ�LR�%\WH7R&KDU&RQYHUWHU�JHW'HIDXOW�^
��������FODVV VXQ�LR�%\WH7R&KDU&S����
�������������VXQ�LR�%\WH7R&KDU
����`
����VXQ�LR�%\WH7R&KDU&RQYHUWHU�JHW&RQYHUWHU�^
��������FODVV VXQ�LR�%\WH7R&KDU&S����
�������������VXQ�LR�%\WH7R&KDU
����`
����MDYD�QHW�85/�JHW85/6WUHDP+DQGOHU�^
��������FODVV �+DQGOHU
����`
����MDYD�QHW�,QHW$GGUHVV��FOLQLW!�^
��������FODVV MDYD�QHW�,QHW$GGUHVV,PSO
����`
����MDYD�VHFXULW\�6HFXULW\�JHW,PSO�^
��������FODVV VXQ�VHFXULW\�SURYLGHU�
����`
����MDYD�VHFXULW\�3URYLGHU�ORDG3URYLGHU�^
��������FODVV VXQ�VHFXULW\�SURYLGHU�6XQ
����`
����MDYD�XWLO�5HVRXUFH%XQGOH�ILQG%XQGOH�^
��������FODVV MDYD�WH[W�UHVRXUFHV�'DWH)RUPDW=RQH'DWD
������������MDYD�WH[W�UHVRXUFHV�'DWH)RUPDW=RQH'DWD
��������FODVV MDYD�WH[W�UHVRXUFHV�'DWH)RUPDW=RQH'DWDBHQ
��������FODVV MDYD�WH[W�UHVRXUFHV�/RFDOH(OHPHQWV
������������MDYD�WH[W�UHVRXUFHV�/RFDOH(OHPHQWV
��������FODVV MDYD�WH[W�UHVRXUFHV�/RFDOH(OHPHQWVBHQ
����`
����VXQ�VHFXULW\�[����$OJRULWKP,G�EXLOG$OJRULWKP,G�^
��������
FODVV VXQ�VHFXULW\��VXQ�VHFXULW\�[����$OJRULWKP,G
����`
����VXQ�VHFXULW\�[����;���.H\�EXLOG;���.H\�^
��������FODVV VXQ�VHFXULW\�[����;���.H\
����`
����MDYD�DZW�7RRONLW�JHW'HIDXOW7RRONLW�^
��������FODVV VXQ�DZW�ZLQGRZV�:7RRONLW
����`
����ODG\EXJ�HQJLQH�)RUPXOD6ROYHU�FUHDWH6ROYHU�^
��������FODVV ODG\EXJ�VHOHQXP�FUHDWH6ROYHU
����`
����VXQ�DZW�6XQ7RRONLW��LQLW!�^
��������FODVV MDYD�DZW�(YHQW4XHXH
����`
����VXQ�DZW�ZLQGRZV�:)RQW3HHU�JHW)RQW&KDUVHW�^
��������FODVV VXQ�LR�&KDU7R%\WH&S����
����`
����VXQ�DZW�ZLQGRZV�:)RQW0HWULFV�JHW0)6WULQJ:LGWK�^
��������FODVV VXQ�LR�&KDU7R%\WH&S����
����`
����VXQ�DZW�ZLQGRZV�:*UDSKLFV�GUDZ0)&KDUV�^
��������FODVV VXQ�LR�&KDU7R%\WH&S����
����`
����ODG\EXJ�SDUVH�)RUPXOD�FUHDWH3HHU�^
����`
����ODG\EXJ�SDUVH�7HUP�FUHDWH3HHU�^
����`
����MHVV�0DLQ�PDLQ�^
��������FODVV MHVV�6WULQJ)XQFWLRQV
��������FODVV MHVV�3UHG)XQFWLRQV
��������FODVV MHVV�0XOWL)XQFWLRQV
��������FODVV MHVV�0LVF)XQFWLRQV
��������FODVV MHVV�0DWK)XQFWLRQV
��������FODVV MHVV�%DJ)XQFWLRQV
��������FODVV MHVV�UHIOHFW�5HIOHFW)XQFWLRQV
��������FODVV MHVV�YLHZ�9LHZ)XQFWLRQV
����`
����MHVV�)XQFDOO�ORDG,QWULQVLFV�^
��������FODVV MHVV�$VVHUW
��������FODVV MHVV�5HWUDFW

��������FODVV MHVV�5HWUDFW6WULQJ
��������FODVV MHVV�3ULQWRXW
��������FODVV MHVV�([WUDFW*OREDO
��������FODVV MHVV�2SHQ
��������FODVV MHVV�&ORVH
��������FODVV MHVV�)RUHDFK
��������FODVV MHVV�5HDG
��������FODVV MHVV�5HDGOLQH
��������FODVV MHVV�*HQV\P6WDU
��������FODVV MHVV�:KLOH
��������FODVV MHVV�,I
��������FODVV MHVV�%LQG
��������FODVV MHVV�0RGLI\
��������FODVV MHVV�$QG
��������FODVV MHVV�1RW
��������FODVV MHVV�2U
��������FODVV MHVV�(T
��������FODVV MHVV�(T6WDU
��������FODVV MHVV�(TXDOV
��������FODVV MHVV�1RW(TXDOV
��������FODVV MHVV�*W
��������FODVV MHVV�/W
��������FODVV MHVV�*W2U(T
��������FODVV MHVV�/W2U(T
��������FODVV MHVV�1HT
��������FODVV MHVV�0RG
��������FODVV MHVV�3OXV
��������FODVV MHVV�7LPHV
��������FODVV MHVV�0LQXV
��������FODVV MHVV�'LYLGH
��������FODVV MHVV�6\P&DW
��������FODVV MHVV�/RDG)DFWV
��������FODVV MHVV�6DYH)DFWV
��������FODVV MHVV�$VVHUW6WULQJ
��������FODVV MHVV�8Q'HIUXOH
��������FODVV MHVV�7U\
����`
����MHVV�/RDG3NJ�FDOO�^
��������FODVV MHVV��MHVV�8VHUSDFNDJH
����`
����MHVV�/RDG)Q�FDOO�^
��������FODVV MHVV��MHVV�8VHUIXQFWLRQ
����`
����MHVV�6HW6WUDWHJ\�FDOO�^
��������FODVV MHVV��MHVV�6WUDWHJ\
����`
�����MHVV�1RGH7HVW�DGG7HVW�LQW�LQW�LQW�MHVV�9DOXH���^
��������FODVV MHVV��MHVV�7HVW
����`
����MHVV�5HWH��LQLW!�^
��������FODVV MHVV�GHSWK
����`
@

MDYD�ODQJ�&ODVV�IRU1DPH�>
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�PDLQ�^
��������FODVV DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW
����`
����
DMD[�WRROV�EHQFKPDUNV�*HQHUDO%HQFKPDUN�PDNH3ULQW6LQN6WUHD
P�^
��������FODVV MDYD�LR�2XWSXW6WUHDP
��������FODVV MDYD�LR�3ULQW6WUHDP
����`
����VXQ�LR�&KDU7R%\WH&RQYHUWHU�JHW&RQYHUWHU&ODVV�^
��������FODVV VXQ�LR�&KDU7R%\WH&S�����������
VXQ�LR�&KDU7R%\WH
����`
����VXQ�LR�%\WH7R&KDU&RQYHUWHU�JHW&RQYHUWHU&ODVV�^
��������FODVV VXQ�LR�%\WH7R&KDU&S�����������
VXQ�LR�%\WH7R&KDU
����`
����MDYD�LR�2EMHFW6WUHDP&ODVV��FOLQLW!�^
��������FODVV MDYD�LR�6HULDOL]DEOH
��������FODVV MDYD�LR�([WHUQDOL]DEOH
����`
����MDYD�QHW�85/�JHW85/6WUHDP+DQGOHU�^
��������FODVV �+DQGOHU

292

����`
����MDYD�QHW�,QHW$GGUHVV��FOLQLW!�^
��������FODVV MDYD�QHW�,QHW$GGUHVV,PSO
����`
����MDYD�VHFXULW\�6HFXULW\�JHW,PSO�^
��������FODVV VXQ�VHFXULW\�SURYLGHU�
����`
����MDYD�VHFXULW\�3URYLGHU�ORDG3URYLGHU�^
��������FODVV VXQ�VHFXULW\�SURYLGHU�6XQ
����`
����VXQ�VHFXULW\�[����$OJRULWKP,G�EXLOG$OJRULWKP,G�^
��������
FODVV VXQ�VHFXULW\��VXQ�VHFXULW\�[����$OJRULWKP,G
����`
����VXQ�VHFXULW\�[����;���.H\�EXLOG;���.H\�^
��������FODVV VXQ�VHFXULW\�[����;���.H\
����`
����MDYD�DZW�7RRONLW�JHW'HIDXOW7RRONLW�^
��������FODVV VXQ�DZW�ZLQGRZV�:7RRONLW
����`
����ODG\EXJ�HQJLQH�6FKHPD6ROYHU�VROYHU&ODVVHV�^
��������FODVV ODG\EXJ�VHOHQXP�6HO(QXP6ROYHU
����`
����VXQ�DZW�6XQ7RRONLW��LQLW!�^
��������FODVV MDYD�DZW�(YHQW4XHXH
����`
����VXQ�DZW�ZLQGRZV�:)RQW3HHU�JHW)RQW&KDUVHW�^
��������FODVV VXQ�LR�&KDU7R%\WH&S����
����`
����MDYDILJ�REMHFWV�)LJ$WWULEV��FOLQLW!�^
��������FODVV MDYD�DZW�JHRP�$IILQH7UDQVIRUP
����`
����MHVV�0DLQ�PDLQ�^
��������FODVV MHVV�6WULQJ)XQFWLRQV
��������FODVV MHVV�3UHG)XQFWLRQV
��������FODVV MHVV�0XOWL)XQFWLRQV
��������FODVV MHVV�0LVF)XQFWLRQV
��������FODVV MHVV�0DWK)XQFWLRQV
��������FODVV MHVV�%DJ)XQFWLRQV
��������FODVV MHVV�UHIOHFW�5HIOHFW)XQFWLRQV
��������FODVV MHVV�YLHZ�9LHZ)XQFWLRQV
����`
����MHVV�)XQFDOO�ORDG,QWULQVLFV�^
��������FODVV MHVV�$VVHUW
��������FODVV MHVV�5HWUDFW
��������FODVV MHVV�5HWUDFW6WULQJ
��������FODVV MHVV�3ULQWRXW
��������FODVV MHVV�([WUDFW*OREDO
��������FODVV MHVV�2SHQ
��������FODVV MHVV�&ORVH
��������FODVV MHVV�)RUHDFK
��������FODVV MHVV�5HDG
��������FODVV MHVV�5HDGOLQH
��������FODVV MHVV�*HQV\P6WDU
��������FODVV MHVV�:KLOH
��������FODVV MHVV�,I
��������FODVV MHVV�%LQG
��������FODVV MHVV�0RGLI\
��������FODVV MHVV�$QG
��������FODVV MHVV�1RW
��������FODVV MHVV�2U
��������FODVV MHVV�(T
��������FODVV MHVV�(T6WDU
��������FODVV MHVV�(TXDOV
��������FODVV MHVV�1RW(TXDOV
��������FODVV MHVV�*W
��������FODVV MHVV�/W
��������FODVV MHVV�*W2U(T
��������FODVV MHVV�/W2U(T
��������FODVV MHVV�1HT
��������FODVV MHVV�0RG
��������FODVV MHVV�3OXV
��������FODVV MHVV�7LPHV
��������FODVV MHVV�0LQXV
��������FODVV MHVV�'LYLGH
��������FODVV MHVV�6\P&DW
��������FODVV MHVV�/RDG)DFWV
��������FODVV MHVV�6DYH)DFWV
��������FODVV MHVV�$VVHUW6WULQJ
��������FODVV MHVV�8Q'HIUXOH
��������FODVV MHVV�7U\
����`
����MHVV�/RDG3NJ�FDOO�^
��������FODVV MHVV��MHVV�8VHUSDFNDJH
����`
����MHVV�/RDG)Q�FDOO�^
��������FODVV MHVV��MHVV�8VHUIXQFWLRQ
����`
����MHVV�6HW6WUDWHJ\�FDOO�^
��������FODVV MHVV��MHVV�6WUDWHJ\
����`
�����MHVV�1RGH7HVW�DGG7HVW�LQW�LQW�LQW�MHVV�9DOXH���^

��������FODVV MHVV��MHVV�7HVW
����`
����MHVV�5HWH��LQLW!�^
��������FODVV MHVV�GHSWK
����`
@

MDYD�ODQJ�&ODVV�JHW&RQVWUXFWRU�>
����MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH&RPPDQG&DOOEDFN�^
����`
����
DMD[�WRROV�EHQFKPDUNV�*HQHUDO%HQFKPDUN�PDNH3ULQW6LQN6WUHD
P�^
����`
@

MDYD�ODQJ�UHIOHFW�&RQVWUXFWRU�QHZ,QVWDQFH�>
����MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH&RPPDQG&DOOEDFN�^
��������FODVV MDYDILJ�FRPPDQGV�
����`
����
DMD[�WRROV�EHQFKPDUNV�*HQHUDO%HQFKPDUN�PDNH3ULQW6LQN6WUHD
P�^
��������FODVV MDYD�LR�3ULQW6WUHDP
����`
@

MDYD�ODQJ�&ODVV�JHW0HWKRG�>
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�PDLQ�^
��������PHWKRG DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�
����`
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�KHOOR�^
��������PHWKRG DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�
����`
����MDYDILJ�JXL�0RGXODU(GLWRU�FDOO�^
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&DQFHO
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR8QGR
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HGR
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR)OXVK8QGR6WDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR'HOHWH$OO
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RS\7R&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&XW7R&OLSERDUG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DVWH)URP&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&LUFOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH(OOLSVH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH5HFWDQJOH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH5RXQG5HFWDQJOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH3RO\OLQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH3RO\JRQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH6SOLQH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&ORVHG6SOLQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH%H]LHU
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&ORVHG%H]LHU
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH$UF
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH,PDJH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH7H[W
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH/LQN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&RPSRXQG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR%UHDN&RPSRXQG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0RYH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RS\2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR'HOHWH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0RYH3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR,QVHUW3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&XW3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0LUURU;2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0LUURU<2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6FDOH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR$OLJQ2EMHFWV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6QDS2EMHFW7R*ULG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RQYHUW2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HVL]H7H[W
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR8SGDWH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&DQFHO8SGDWH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH$OO
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH1RQH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH,QYHUW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR(GLW2EMHFW
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR(GLW*OREDO$WWULEXWHV
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP5HJLRQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP,Q
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP2XW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP��

293

��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ+RPH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ/HIW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ5LJKW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ8S
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ'RZQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG1RQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG&RDUVH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG0HGLXP
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG)LQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW1R6QDS
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV,QFKHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV0LOOLPHWHU
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV;ILJ0LOOLPHWHU
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6QDS$OO2EMHFWV7R*ULG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&OHDU8VHU&RORUV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR:ULWH+DGHV5HVRXUFH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HGUDZ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6WDUW1HZ'UDZLQJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HOHFW)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0HUJH)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HOHFW85/
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0HUJH85/
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH3DUVHU&DOOEDFN
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH3DUVHU0HUJH&DOOEDF
N
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH&RPPDQG&DOOEDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR4XLW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH)LOH$V
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH7R&RQVROH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW9LD$:7
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW8QGR6WDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW2EMHFWV
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ0HVVDJHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ$ERXW'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ/LFHQVH'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HDGORFN'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ&KDQJHV'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ0RXVH%XWWRQ'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ6KRUWFXW.H\V'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ)DT'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ+HOS'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR*ROG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR+RXVH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR:DWFK
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR&LUFXLW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR/D\RXW
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR3LFWXUHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR5RWDWHG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR8QLFRGH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR:HOFRPH
����`
����MDYDILJ�JXL�(GLW7H[W'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW3RO\OLQH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW(OOLSVH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW7ULJJHU'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW,PDJH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW5HFWDQJOH'LDORJ�JHW6WDWXV0HVVDJH�^

��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����
MDYDILJ�JXL�(GLW*OREDO$WWULEXWHV'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�FRPPDQGV�=RRP5HJLRQ&RPPDQG�H[HFXWH�^
��������PHWKRG MDYDILJ��GR=RRP5HJLRQ
����`
@

MDYD�ODQJ�UHIOHFW�0HWKRG�LQYRNH�>
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�PDLQ�^
��������PHWKRG DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�
����`
����DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�KHOOR�^
��������PHWKRG DMD[�DQDO\]HU�WHVW�5HIOHFWLRQ7HVW�
����`
����MDYDILJ�JXL�0RGXODU(GLWRU�FDOO�^
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&DQFHO
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR8QGR
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HGR
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR)OXVK8QGR6WDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR'HOHWH$OO
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RS\7R&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&XW7R&OLSERDUG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DVWH)URP&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&LUFOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH(OOLSVH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH5HFWDQJOH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH5RXQG5HFWDQJOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH3RO\OLQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH3RO\JRQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH6SOLQH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&ORVHG6SOLQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH%H]LHU
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&ORVHG%H]LHU
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH$UF
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH,PDJH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH7H[W
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH/LQN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&UHDWH&RPSRXQG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR%UHDN&RPSRXQG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0RYH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RS\2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR'HOHWH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0RYH3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR,QVHUW3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&XW3RLQW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0LUURU;2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0LUURU<2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6FDOH2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR$OLJQ2EMHFWV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6QDS2EMHFW7R*ULG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&RQYHUW2EMHFW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HVL]H7H[W
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR8SGDWH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&DQFHO8SGDWH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH$OO
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH1RQH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�HQDEOH8SGDWH,QYHUW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR(GLW2EMHFW
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR(GLW*OREDO$WWULEXWHV
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP5HJLRQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP,Q
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP2XW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR=RRP��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ+RPH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ/HIW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ5LJKW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ8S
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3DQ'RZQ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG1RQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG&RDUVH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG0HGLXP
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW*ULG)LQH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW1R6QDS
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW6QDS��
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV,QFKHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV0LOOLPHWHU

294

��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HW8QLWV;ILJ0LOOLPHWHU
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6QDS$OO2EMHFWV7R*ULG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR&OHDU8VHU&RORUV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR:ULWH+DGHV5HVRXUFH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR5HGUDZ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6WDUW1HZ'UDZLQJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HOHFW)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0HUJH)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6HOHFW85/
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR0HUJH85/
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH3DUVHU&DOOEDFN
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH3DUVHU0HUJH&DOOEDF
N
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�KDQGOH&RPPDQG&DOOEDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR4XLW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH)LOH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH)LOH$V
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6DYH7R&RQVROH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW9LD$:7
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW8QGR6WDFN
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW&OLSERDUG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR3ULQW2EMHFWV
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ0HVVDJHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ$ERXW'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ/LFHQVH'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HDGORFN'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ&KDQJHV'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ0RXVH%XWWRQ'LDORJ
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ6KRUWFXW.H\V'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ)DT'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ+HOS'LDORJ
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR*ROG
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR+RXVH
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR:DWFK
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR&LUFXLW
��������PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR/D\RXW
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR3LFWXUHV
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR5RWDWHG
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR8QLFRGH
��������
PHWKRG MDYDILJ�JXL�0RGXODU(GLWRU�GR6KRZ'HPR:HOFRPH
����`
����MDYDILJ�JXL�(GLW7H[W'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW3RO\OLQH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW(OOLSVH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW7ULJJHU'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW,PDJH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�JXL�(GLW5HFWDQJOH'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����
MDYDILJ�JXL�(GLW*OREDO$WWULEXWHV'LDORJ�JHW6WDWXV0HVVDJH�^
��������PHWKRG MDYDILJ��JHW6WDWXV0HVVDJH
����`
����MDYDILJ�FRPPDQGV�=RRP5HJLRQ&RPPDQG�H[HFXWH�^
��������PHWKRG MDYDILJ��GR=RRP5HJLRQ
����`
@

�MDYD�ODQJ�&ODVV/RDGHU�GHILQH&ODVV�MDYD�ODQJ�6WULQJ�E\WH>
@�LQW�LQW���>
@

MDYD�ODQJ�&ODVV/RDGHU�ILQG6\VWHP&ODVV�>

����MDYD�XWLO�6\VWHP&ODVV/RDGHU�ORDG&ODVV�^
����`
@

MDYD�XWLO�6\VWHP&ODVV/RDGHU�ORDG&ODVV�>
@

MDYD�LR�2EMHFW,QSXW6WUHDP��LQLW!�>
����DMD[�MEF�XWLO�VDODPLV�6DODPLV&RGH/RDGHU�UHDG&RGH�^
��������VHULDOL]HG DMD[�MEF�XWLO�VDODPLV�
��������VHULDOL]HG DMD[�MEF�XWLO�
��������VHULDOL]HG MDYD�XWLO�+DVKWDEOH
����`
����VXQ�VHFXULW\�SURYLGHU�,GHQWLW\'DWDEDVH�IURP6WUHDP�^
��������VHULDOL]HG VXQ�VHFXULW\�
��������VHULDOL]HG MDYD�VHFXULW\�
����`
@

VXQ�DZW�ZLQGRZV�:)RQW3HHU�JHW)RQW&KDUVHW�>
@

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Setting
	1.1.1 Software Engineering and Alias Analysis
	1.1.2 The Need For Alias Information
	1.1.3 Shortcomings of Existing Tools
	1.1.4 Assumptions
	1.1.5 Goal

	1.2 Approach
	1.2.1 Support For Multiple Tools and Analyses
	1.2.2 Support For Java Programs
	1.2.3 Simple Context Sensitive Analysis
	1.2.4 Distinguishing Features

	1.3 Contributions
	1.4 Thesis Overview

	2 Related Work
	2.1 Introduction
	2.2 Program Analyses
	2.2.1 Distinguishing Analysis Techniques from Analysis Problems
	2.2.2 Classifying Analyses
	2.2.3 Describing Results
	2.2.4 Flow Sensitive, Context Insensitive Analyses
	2.2.5 Flow Sensitive, Context Sensitive Analyses
	2.2.6 Simpler Analyses
	2.2.7 Flow Insensitive, Context Sensitive Analyses
	2.2.8 Type Inference for Object Oriented Languages
	2.2.9 Composing Analyses
	2.2.10 Analysis Toolkits

	2.3 Software Engineering Tools
	2.3.1 Software Engineering Tools for Program Understanding
	2.3.2 Semantics-based Tools For Program Understanding

	2.4 Language Semantics

	3 The Value-Point Relation: Separating Analyses from Tools
	3.1 Overview
	3.1.1 Desirability of Simple Semantics
	3.1.2 The Value-Point Relation

	3.2 Semantics of the Micro Java Bytecode Language
	3.2.1 Preamble
	3.2.2 Programs
	3.2.3 State
	3.2.4 Initial State
	3.2.5 Transition Rules
	3.2.6 Differences between JBC and MJBC

	3.3 The Value-Point Relation
	3.3.1 Bytecode Expressions
	3.3.2 The Value-Point Relation

	3.4 Generalizing Alias Analysis Using Tagging
	3.4.1 Overview
	3.4.2 Tagged State
	3.4.3 Tagged Transition Rules
	3.4.4 Correspondence Between Tagged Semantics and Untagged Semantics
	3.4.5 Correspondence of Traces
	3.4.6 Defining the VPR Using Tags

	3.5 Examples of Using the Value-Point Relation
	3.5.1 Finding Writers to a Field
	3.5.2 Downcast Checking

	3.6 Properties of the Value-Point Relation
	3.7 Extensions

	4 Efficient Queries over the Value-Point Relation
	4.1 Introduction
	4.2 Analysis Parameters
	4.2.1 Restricting the Domain of the Value-Point Relation
	4.2.2 Avoiding Explicit Products
	4.2.3 General Framework
	4.2.4 Tool Target Data
	4.2.5 Summary of Analysis Parameters

	4.3 Examples
	4.3.1 Finding Writers to a Field
	4.3.2 Finding Unused Fields
	4.3.3 Downcast Checking
	4.3.4 Method Call Resolution
	4.3.5 Live Code Detection

	4.4 Additional Features of the Ajax Implementation
	4.4.1 Query Families and Query Fields
	4.4.2 Incrementality
	4.4.3 Code Mutation
	4.4.4 Analysis Scoping
	4.4.5 Intersection

	5 Implementing the Value- Point Relation With RTA
	5.1 Introduction
	5.1.1 Introduction to Rapid Type Analysis
	5.1.2 Decomposing RTA in Ajax

	5.2 Approximating the Value-Point Relation
	5.2.1 Overview
	5.2.2 Types for Bytecode Expressions
	5.2.3 Computing the Relation
	5.2.4 Exact Class Types

	5.3 Implementing the Ajax Analysis Interface
	5.3.1 The Data Propagation Graph
	5.3.2 Computing Analysis Results
	5.3.3 Example
	5.3.4 Performance
	5.3.5 Incrementality

	5.4 RTA++: Tracking Typecases
	5.4.1 Motivation
	5.4.2 Refining the Bytecode Type Assignment

	6 The SEMI Analysis
	6.1 Introduction
	6.1.1 Chapter Overview
	6.1.2 Approach
	6.1.3 Implications
	6.1.4 Relationship to the Implementation
	6.1.5 Chapter Organization

	6.2 Constraint System
	6.2.1 Constraints
	6.2.1.1 Constraint Structures
	6.2.1.2 Relationship to Terms

	6.2.2 Solutions
	6.2.3 Remarks

	6.3 The Encoding
	6.3.1 Introduction
	6.3.2 Methods
	6.3.3 Global Variables
	6.3.4 Object Encoding
	6.3.5 Method Encoding
	6.3.5.1 Static Methods
	6.3.5.2 Nonstatic Methods
	6.3.5.3 Type Checking/Inference For Nonstatic Methods
	6.3.5.4 Treatment Of Polymorphism
	6.3.5.5 Polymorphism In Object Creation

	6.3.6 Extensible Records and Object Classes
	6.3.7 Mutability
	6.3.8 Control Flow
	6.3.9 Exception Handling

	6.4 Initial Constraint Set
	6.4.1 Constraint Variables
	6.4.2 Instance Labels
	6.4.3 Component Labels
	6.4.4 Program Constraints
	6.4.5 Query Constraints
	6.4.6 Canonical Constraint Set
	6.4.7 Example
	6.4.7.1 Initial Constraints
	6.4.7.2 Finding a Closed Form

	6.5 Extracting the VPR Approximation
	6.5.1 Overview
	6.5.2 Relating Bytecode Expressions to Variables
	6.5.3 Constraints to Support Query Expressions
	6.5.3.1 Inadequacy of Program Constraints
	6.5.3.2 Query Constraints

	6.6 Implementing the Ajax Interface
	6.6.1 The Graph
	6.6.2 Computing Analysis Results
	6.6.3 Incrementality

	6.7 Proving Soundness
	6.7.1 Overview
	6.7.1.1 Strategy
	6.7.1.2 Note: Unique Justification for Transitions

	6.7.2 The Creation Function
	6.7.2.1 “Creation” Is a Function

	6.7.3 The CallerState Function
	6.7.3.1 Definition
	6.7.3.2 Scope of Definition
	6.7.3.3 Nested Call Stack
	6.7.3.4 Preservation of Caller State
	6.7.3.5 Method Entry Correspondence

	6.7.4 The Context Function
	6.7.4.1 Definition of the Context Function
	6.7.4.2 Preservation of Return Types

	6.7.5 Proving the Conformance Lemma
	6.7.5.1 Base Case
	6.7.5.2 Preservation of Virtual Call Types
	6.7.5.3 Globals Hypothesis
	6.7.5.4 Field Dereferences
	6.7.5.5 Static Field Expressions
	6.7.5.6 Cases For Simple Expressions
	6.7.5.7 Reduction Function
	6.7.5.8 Succession Lemma
	6.7.5.9 Step: load rule
	6.7.5.10 Induction Step: store rule
	6.7.5.11 Induction Step: new rule
	6.7.5.12 Induction Step: aconst_null rule
	6.7.5.13 Induction Step: bipush rule
	6.7.5.14 Induction Step: rule for spontaneous exception throw
	6.7.5.15 Induction Step: invokestatic rule
	6.7.5.16 Induction Step: invokevirtual rule
	6.7.5.17 Induction Step: return rule
	6.7.5.18 Induction Step: exceptional returns
	6.7.5.19 Induction Step: athrow rule
	6.7.5.20 Induction Step: rule for exception catching
	6.7.5.21 Induction Step: getfield rule
	6.7.5.22 Induction Step: putfield rule
	6.7.5.23 Induction Step: getstatic rule
	6.7.5.24 Induction Step: putstatic rule
	6.7.5.25 Induction Step: iadd rule
	6.7.5.26 Induction Step: ifcmpeq rules
	6.7.5.27 Induction Step: goto rule
	6.7.5.28 Induction Step: instanceof rules
	6.7.5.29 Induction Step: checkcast rule

	7 SEMI Implementation
	7.1 Introduction
	7.1.1 Solver Specification
	7.1.2 Decidability and Performance
	7.1.3 Refined Specification
	7.1.4 Basic Structure

	7.2 Basic Algorithm
	7.2.1 Representation of Equality
	7.2.2 Functional Representation of Components and Instances
	7.2.3 Component Propagation
	7.2.4 Saving Time By Recording Additional Dirtiness Information
	7.2.5 Overview of an Algorithm Step
	7.2.6 The Extended Occurs Check
	7.2.7 Nondeterminism

	7.3 Optimizing the Occurs Check: Clusters
	7.3.1 Constraint Structure
	7.3.2 Clusters
	7.3.3 Optimizing the Extended Occurs Check Using Clusters
	7.3.4 Cluster Levels
	7.3.5 Optimizing the Extended Occurs Check Using Cluster Levels
	7.3.6 Replacing the Extended Occurs Check with a Conservative Approximation

	7.4 Scheduling the Worklist Using Cluster Levels
	7.4.1 The Scheduling Problem
	7.4.2 Using Cluster Levels

	7.5 Suppressing Components: Advertisements
	7.5.1 Useless Component Propagation
	7.5.2 Illustration
	7.5.3 Quasi-closure Conditions
	7.5.4 Advertisements
	7.5.5 Example
	7.5.6 Ensuring Quasi-closure: Fill-in
	7.5.7 Ensuring Quasi-closure: Detecting Conflicting Sources
	7.5.8 Simple Example
	7.5.9 Advertisement Source Updates
	7.5.10 Implementation

	7.6 Globals
	7.6.1 Handling Program Global Variables
	7.6.2 Characterization of Constraints for Globals
	7.6.3 Implementation
	7.6.4 Exceptions

	7.7 A Failed Optimization: Cut-throughs
	7.7.1 Example
	7.7.2 Cut-throughs

	7.8 Reducing the Number of Initial Constraints
	7.8.1 Dynamic Method Call Resolution
	7.8.2 Lazy Method Slot Stuffing
	7.8.3 Instance Suppression
	7.8.4 Disabling Intra-method Polymorphism
	7.8.5 Structural Shortcuts

	7.9 Reducing the Number of Inferred Constraints
	7.9.1 Component Partitioning

	7.10 Suppressing Components: Modality
	7.10.1 Example
	7.10.2 Approach
	7.10.3 Solver Rules
	7.10.4 Example
	7.10.5 Implementation
	7.10.6 Detecting Unused Fields

	7.11 Nondeterministic Virtual Method Calls
	7.12 Future Work and Related Work

	8 Analyzing The Inscrutable
	8.1 Introduction
	8.2 Foreign and Unknown Code
	8.2.1 Foreign Code
	8.2.2 Unknown Code
	8.2.3 Possible Approaches

	8.3 Salamis: A Specification Language for Foreign Code
	8.3.1 The Need For A Separate Specification Language
	8.3.2 Example and Overview
	8.3.3 Salamis Syntax
	8.3.4 Other Salamis Features
	8.3.5 Implementation

	8.4 Salamis Specifications
	8.4.1 Omissions
	8.4.2 Risks
	8.4.3 Handling Strings
	8.4.4 Other Areas Of Interest

	8.5 Reflection And Serialization
	8.5.1 Introduction
	8.5.2 The Reflection Services
	8.5.3 Reflection Specifications
	8.5.4 Reflection Specification Syntax
	8.5.5 Creating The Specifications
	8.5.6 Using Reflection Specifications

	8.6 Conclusions

	9 Performance
	9.1 Introduction
	9.2 Benchmark Environment
	9.2.1 System
	9.2.2 Benchmark Examples

	9.3 Tools
	9.3.1 Virtual Call Resolution
	9.3.2 Live Code Identification

	9.4 Performance of RTA++
	9.5 Performance of SEMI
	9.5.1 Overview
	9.5.2 Performance of SEMI in Different Configurations
	9.5.3 Accuracy of SEMI in Different Configurations
	9.5.4 Component Partitioning in SEMI

	9.6 RTA++ and SEMI Intersection
	9.6.1 Basic Results
	9.6.2 Set Sizes

	9.7 Summary of Ajax Performance
	9.7.1 Algorithm Selection
	9.7.2 Summary Results
	9.7.3 Conclusions

	10 Proving Downcast Safety
	10.1 Introduction
	10.1.1 Parametric Polymorphism and Downcasts
	10.1.2 Using SEMI To Prove Downcasts Correct

	10.2 The Downcast Checking Tool
	10.2.1 Interface to the VPR
	10.2.2 User Interface

	10.3 Quantitative Results
	10.3.1 Proving Downcasts Safe Using RTA++
	10.3.2 Proving Downcasts Safe Using SEMI
	10.3.3 Proving Downcasts Safe Using SEMI with RTA++
	10.3.4 Summary

	10.4 Unresolvable Downcasts
	10.4.1 Confusion Involving Sum Types
	10.4.2 “Out Of Band” Dynamic Type Knowledge

	10.5 Conclusions
	10.5.1 Summary
	10.5.2 Other Applications
	10.5.3 Limitations of Downcast Checking

	11 Ajax Object Models
	11.1 Introduction
	11.1.1 Overview of Object Models
	11.1.2 A Definition of Object Models

	11.2 Computing Object Models with Ajax
	11.2.1 Overview
	11.2.2 Computing Heap Graphs With The VPR
	11.2.2.1 Approach
	11.2.2.2 Method
	11.2.2.3 Correctness
	11.2.2.4 Solution
	11.2.2.5 Implementing Substitutability In RTA++
	11.2.2.6 Implementing Substitutability In SEMI
	11.2.2.7 Improving The Heap Graph Algorithm
	11.2.2.8 Reducing Space Consumption

	11.2.3 Lossless Improvement to the Model
	11.2.3.1 Superflous Leaf Classes
	11.2.3.2 Merging Identical Subgraphs

	11.2.4 User Interface

	11.3 Examples
	11.3.1 JavaP Example
	11.3.2 CTAS Example
	11.3.3 Improving The Model By Discarding Information
	11.3.3.1 Removing “Lumps”
	11.3.3.2 Hiding Strings And Other Classes

	11.3.4 Jess Example

	11.4 Conclusions
	11.4.1 Contributions
	11.4.2 Future Work

	12 A Scanning Tool
	12.1 Introduction
	12.2 The JGrep Tool
	12.2.1 User Interface
	12.2.2 Implementation

	12.3 Examples
	12.3.1 Checking an Anomaly
	12.3.2 Checking Field Accesses

	12.4 Conclusions

	13 Conclusions
	13.1 Summary
	13.2 Outlook

	Bibliography
	[1] O. Agesen. The Cartesian Product Algorithm: Simple And Precise Type Inference Of Parametric P...
	[2] A. Aiken, M. Fähndrich, J. Foster and Z. Su. A Toolkit For Constructing Type- And Constraint-...
	[3] A. Aiken and E. Wimmers. Type Inclusion Constraints And Type Inference. Proceedings of the In...
	[4] J. Aldrich, C. Chambers, E. Gun Sirer, and S. Eggers. Static Analyses For Eliminating Unneces...
	[5] L. Andersen. Program Analysis and Specialization For The C Programming Language. Technical Re...
	[6] J. Ashley and R. Dybvig. A Practical And Flexible Flow Analysis For Higher-Order Languages. A...
	[7] R. Bowdidge and W. Griswold. Automated Support For Encapsulating Abstract Data Types. Proceed...
	[8] A. Bondorf and J. Jørgensen. Efficient Analyses For Realistic Off-line Partial Evaluation. Jo...
	[9] D. Bacon and P. Sweeney. Fast Static Analysis Of C++ Virtual Function Calls. Proceedings of t...
	[10] B. Blanchet. Escape Analysis For Object-Oriented Languages: Application To Java. Proceedings...
	[11] J. Bogda and U. Hölzle. Removing Unnecessary Synchronization In Java. Proceedings of the ACM...
	[12] J. Boyland and A. Greenhouse. May Equal: A New Alias Question. Presented at the Intercontine...
	[13] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler. Making The Future Safe For The Past: Add...
	[14] R. Chatterjee, B. Ryder and W. Landi. Relevant Context Inference. Proceedings of the 26th An...
	[15] Y.-F. Chen, M. Nishimoto, and C. Ramamoorthy. The C Information Abstraction System. IEEE Tra...
	[16] B. Cheng and W. Hwu. Modular Interprocedural Pointer Analysis Using Access Paths: Design, Im...
	[17] J. Choi, M. Gupta, M. Serrano, V. Sreedhar and S. Midkiff. Escape Analysis For Java. Proceed...
	[18] M. Cierniak, G. Lueh and J. Stichnoth. Practicing JUDO: Java Under Dynamic Optimizations. Pr...
	[19] M. Das. Unification-Based Pointer Analysis With Directional Assignments. Proceedings of the ...
	[20] J. Dean, D. Grove, and C. Chambers. Optimization Of Object-Oriented Programs Using Static Cl...
	[21] G. DeFouw, D. Grove and C. Chambers. Fast Interprocedural Class Analysis. Proceedings of the...
	[22] A. Diwan, J. Moss, and K. McKinley. Simple And Effective Analysis Of Statically- Typed Objec...
	[23] A. Diwan, J. Moss, and K. McKinley. Type-Based Alias Analysis. Proceedings of the ACM SIGPLA...
	[24] J. Dolby and A. Chien. An Automatic Object Inlining Optimization And Its Evaluation. Proceed...
	[25] D. Duggan. Modular Type-Based Reverse Engineering Of Parameterized Types In Java Code. Proce...
	[26] P. Eidorff, F. Henglein, C. Mossin, H. Niss, M. Sørensen and M. Tofte. AnnoDomini: From Type...
	[27] J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Inference For Objects. Proceedi...
	[28] M. Fähndrich. BANE: A Library for Scalable Constraint-Based Program Analysis. PhD Thesis, Co...
	[29] M. Fähndrich and A. Aiken. Program Analysis Using Mixed Term And Set Constraints. Proceeding...
	[30] M. Fähndrich, J. Foster, Z. Su and A. Aiken. Partial Online Cycle Elimination In Inclusion C...
	[31] M. Fähndrich, J. Rehof and M. Das. Scalable Context-Sensitive Flow Analysis Using Instantiat...
	[32] M. Fernandez, Simple And Effective Link-Time Optimization Of Modula-3 Programs. Proceedings ...
	[33] C. Flanagan and M. Felleisen. Componential Set-Based Analysis. ACM Transactions on Programmi...
	[34] J. Foster, M. Fähndrich and A. Aiken. Polymorphic Versus Monomorphic Flow- Insensitive Point...
	[35] E. Friedman-Hill. Jess, The Java Expert System Shell. Technical Report SAND98- 8206 (revised...
	[36] E. Gansner and S. North. An Open Graph Visualization System And Its Applications To Software...
	[37] D. Grove, G. DeFouw, J. Dean and C. Chambers. Call Graph Construction In Object-Oriented Lan...
	[38] D. Gifford, P. Jouvelot, J. Lucassen, and M. Sheldon. FX-87 Reference Manual. Technical Repo...
	[39] N. Heintze. Set-Based Analysis Of ML Programs. Proceedings of the ACM Conference on Lisp and...
	[40] N. Heintze. Control-Flow Analysis And Type Systems. Proceedings of the 2nd Static Analysis S...
	[41] N. Heintze and D. McAllester. Linear-Time Subtransitive Control Flow Analysis. Proceedings o...
	[42] F. Henglein. Type Inference With Polymorphic Recursion. ACM Transactions on Programming Lang...
	[43] D. Jackson and J. Chapin. Redesigning Air-Traffic Control: A Case Study In Software Design. ...
	[44] D. Jackson, S. Jha and C. Damon. Isomorph-Free Model Enumeration. ACM Transactions on Progra...
	[45] D. Jackson and E. Rollins. Abstractions Of Program Dependencies For Reverse Engineering. Pro...
	[46] D. Jackson and A. Waingold. Lightweight Extraction Of Object Models From Bytecode. Proceedin...
	[47] S. Jagannathan and S. Weeks. A Unified Treatment Of Flow Analysis In Higher- Order Languages...
	[48] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. Addison W...
	[49] R. Milner. A Theory Of Type Polymorphism In Programming. Journal of Computer and System Scie...
	[50] R. Milner, M. Tofte and R. Harper. The Definition Of Standard ML. MIT Press, 1990.
	[51] G. Murphy and D. Notkin. Lightweight Source Model Extraction. Proceedings of the ACM Confere...
	[52] G. Murphy and D. Notkin. Software Reflexion Models: Bridging The Gap Between Source And High...
	[53] R. O’Callahan. A Simple, Comprehensive Type System For Java Bytecode Subroutines. Proceeding...
	[54] R. O'Callahan and D. Jackson. Lackwit: A Program Understanding Tool Based On Type Inference....
	[55] R. O'Callahan and D. Jackson. Lackwit: Large-Scale Analysis Of C Programs Using Type Inferen...
	[56] N. Oxhøj, J. Palsberg and M. Schwartzbach. Making Type Inference Practical. Proceedings of t...
	[57] J. Palsberg. Efficient Inference Of Object Types. Information and Computation, Volume 123, N...
	[58] J. Palsberg and P. O'Keefe. A Type System Equivalent To Flow Analysis. ACM Transactions on P...
	[59] J. Palsberg and C. Pavlopoulou. From Polyvariant Flow Information To Intersection And Union ...
	[60] J. Palsberg and M. Schwartzbach. Object-Oriented Type Inference. Proceedings of the ACM SIGP...
	[61] X. Leroy and F. Pessaux. Type-Based Analysis Of Uncaught Exceptions. ACM Transactions on Pro...
	[62] D. Liang and M. Harrold. Efficient Points-to Analysis For Whole-Program Analysis. Proceeding...
	[63] J. Plevyak. Optimization Of Object-Oriented And Concurrent Programs. PhD Thesis, University ...
	[64] Z. Qian. A Formal Specification Of Java Virtual Machine Instructions. Technical Report, Univ...
	[65] D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension Of ML. Proceedings...
	[66] A. Rountev, A. Milanova, and B. Ryder. Points-to Analysis For Java Using Annotated Inclusion...
	[67] E. Ruf. Context-Insensitive Alias Analysis Reconsidered. Proceedings of the ACM SIGPLAN '95 ...
	[68] E. Ruf. Partitioning Data Flow Analysis Using Types. Proceedings of the 24th Annual ACM SIGP...
	[69] E. Ruf. Effective Synchronization Removal For Java. Proceedings of the ACM SIGPLAN '00 Confe...
	[70] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object Oriented Modeling And ...
	[71] O. Shivers. Control Flow Analysis In Scheme. Proceedings of the ACM SIGPLAN '88 Conference o...
	[72] B. Steensgaard. Points-To Analysis In Almost Linear Time. Proceedings of the 23rd Annual ACM...
	[73] B. Steensgaard. Points-To Analysis By Type Inference Of Programs With Structures And Unions....
	[74] P. Stocks, B. Ryder, and W. Landi. Comparing Flow- And Context-Sensitivity On The Modificati...
	[75] Z. Su, M. Fähndrich and A. Aiken. Projection Merging: Reducing Redundancies In Inclusion Con...
	[76] V. Sundaresan, L. Hendren, C. Razafimahefa, R Vallee-Rai, P. Lam, E. Gagnon, C. Godin. Pract...
	[77] J.-P. Talpin and P. Jouvelot. The Type And Effect Discipline. Proceedings of the 7th IEEE Sy...
	[78] F. Tip. A Survey Of Program Slicing Techniques. Journal of Programming Languages, Vol. 3, No...
	[79] F. Tip, C. Laffra, P. Sweeney and D. Streeter. Practical Experience With An Application Extr...
	[80] F. Tip and J. Palsberg. Scalable Propagation-Based Call Graph Construction Algorithms. Proce...
	[81] M. Tofte and J.-P. Taplin. Implementation Of The Typed Call-By-Value l-Calculus Using A Stac...
	[82] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, Volume 10, No. 7, Jul...
	[83] J. Whaley and M. Rinard. Compositional Pointer And Escape Analysis For Java Programs. Procee...
	[84] R. Wilson and M. Lam. Efficient Context-Sensitive Pointer Analysis For C Programs. Proceedin...
	[85] A. Wright and R. Cartwright. A Practical Soft Type System For Scheme. Proceedings of the 199...
	[86] S. Zhang, B. Ryder, and W. Landi. Program Decomposition For Pointer Aliasing: A Step Towards...
	[87] S. Zhang, B. Ryder and W. Landi. Experiments With Combined Analysis For Pointer Aliasing. Pr...
	[88] Bugzilla Project Home Page. http://www.mozilla.org/projects/bugzilla
	[89] CodeSurfer Home Page. http://www.codesurfer.com
	[90] Imagix Corporation Home Page http://www.imagix.com
	[91] Linux Cross Reference http://lxr.linux.no

	Appendix A: Polymorphic Recursion, Unrestricted Recursive Types and Principal Types
	A.1 Intuition
	A.2 Proof
	A.3 Comments

	Appendix B: Ajax Foreign Code Specifications
	Appendix C: Ajax Reflection Specifications

